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PREFACE

The research described in this report was conducted under the
Transportation Network Analysis portion of the Transportation Advanced
Research Project (TARP) sponsored by the Office of the Assistant
Secretary for Systems Development and Technology. The network analysis
portion of the program is a broad research effort aimed at developing
(1) computational techniques for transportation network models, and
(2) control-theoretical tecniques for real-time management of large
scale transportation systems. Other research efforts in network analysis
cover decomposition methods for large scale.ngtworks, real-time control
of urban freeway networks, and computational methods for large scale
freight and fleet routing problems.

The contract under which this work was performed was guided
throughout by Dr. Edwin J. Roberts, TSC-213, and by Dr. John: J. Fedrnsides
and Dr. Robert J. Ravera of the Office of the Secretary.
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A, SUMMARY GUIDE TO FINAL REPORT

1, Introduction

This section provides a summary guide to the research performed

by MATHEMATICA on techniques of aggregation applied to network
models used in transportation planning. The central objective of this
’ research has been to identify, extend, and evaluate methods of aggregation
so as to improve the capabilities of the transportation planner by better
computational methods, by more flexible models, and by increased
confidence in the results obtained from aggregated models.
To set the background of this research, we shall give a
quite general statement of the current status of network models used in
tra.nspoz:'tation planning. The structure of this stat-ement parallels the
structure of the comprehensive bibliography prepared as ?a.rt of our
project. Concise descriptions are given for elements in the three cate-
gories that are central to our research:
(i) network models;
(ii) mathematical techniques;
(iii) aggregation methods.

This provides a precise setting for the results achieved up to now and for
promising directions of future research, since the important questions

to be answered all involve the interaction between these three categories.

This interaction can be explained in terms of a simple graphical

device. Figure 1, following, represents an ideal listing of all aggregation

methods (as rows) and all network models (as columns).



network
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FIGURE 1. REPRESENTATION OF AGGREGATION METHODS AND MODELS
The combination of method and model raises a set of questions (to be
elaborated elsewhere) about the results obtained from applying the
aggregation method to the network model. Many of these questions depend
on the mathematical technique used to solve the model (in either aggregated
or disaggregated form). This interaction of aggregation method applied
to network models using mathematical techniques is central to our‘resea.rch
and the main object of this introduction is to make this interdependence
precise by explicit definition and example., The sections that follow
execute this objective in a self-explanatory style.

Before this exposition is begun, one missing element must be discussed.
The bibliography referred to before has one other crucial category:

(4) modal applications. .

Of course, this refers to actual planning for the real modes of transportation
(road, rail, air, sea, etc.) and to real planning objectives. While we
believe that the previous analysis should depend on this element of the
classification to the same extent as the other three, at the present state of

knowledge this is more pious hope than accomplishment. However, we shall



indicate in general terms how this fourth category conditions the results
to be sought and the answers that have been found using the other three,

more theoretical categories.



2. Network Models

In this section, we shall give a concise description of the
categories of network models that have been identified as being
relevant to transportation planning. These follow the classification of
our bibliography and so are indexed as Pl’ PZ’ ces (P = Problem so
as to distinguish them from M = Modal).

P.: Equilibrium Models: An equilibrium (traffic assignment)

1
problem asks for the assignment of flows to the network so that the

constraints are satisfied (constraints may include demand requirements,
capacity limitations, etc.) and so that users' costs cannot be improved
by noncooperative actions (a user optimized or descriptive solution) or
so that total cost is minimized (a system optimized or normative solution).
By variation of the constraints and the nature of the costs, many
special problems (such as the Hitchcock-Koopmans Transportation
Problem) fit this description, but because of their importance have been
given their own category. As understood here, an equilibrium model
refers to a traffic assignment problem in which the link costs to a user
are (non-decreasing) functions of the flows on each link and the constraints
specify origin-destination flows and (possibly) capacity bounds on some
links.

P,: Shortest Path Models: If we let '"distance' stand for a general

X
disutility function (cost, time, discomfort, etc.) then this category is one

of the most important and appears as a major component of several other

models (and mathematical techniques). In its simplest form, it asks for



the shortest path from one fixed node to another node of a network. In
one generalization, included in this category, it asks for all of the least
cost paths. In another, more ambitious generalization, it asks for the
kth shortest path, for k >1.

The importance of this model is underlined by the following quotation
from Steenbrinklz

""Unfortunately, the computation of a shortest path takes
a relatively long computing time: for the road network for the
Dutch Integral Transportation Study consisting of about 2, 000
nodes and 6, 000 links and with 351 origins and destinations, one
shortest path computation for all origins and destinations followed
by an asgignment takes about 12 minutes on an IBM 360/65
computer, using an algorithm based on the algorithm of Moore/
Ford/Bellman written in FORTRAN IV. So it has become clear
now that the use of a good shortest-path algorithm is extremely
important and may even be an important factor in the total costs
of a whole transportation study. On the other hand, because
study budgets are often more or less fixed in advance, the quality
of the shortest-path algorithm used influences the quality of the
transportation study a great deal, "

P3: Maximum Flow Models: This model asks for a maximum flow

between a fixed origin-destination pair in a capacitated network., Various

generalizations are possible which are closer to real-life measures of
the real-life capacity of a network. However, the original problem has a
highly developed mathematical structure and is often called the Ford-
Fulkerson problem, due to their elegant algorithm and related max flow -
min cut theorem.

As will be seen later, this model is a unique example of a model
that yields to an exact aggregation method, due to Gomory and Hu.

P 4 Scheduling and Dynamic Flow Models: These models ask for

flows that meet time requirements in addition to demand requirements

and capacity constraints. Thus, links will have characteristics of

lPeter A, Steenbrink, Optimization of Transportation Networks, John
Wiley & Sons, 1974, p. 150.




of capacity and/or (possibly congestion dependent) traversal times. The
problem of determining maximum origin-destination flows within a
specified time is often called the ''dynamic max-flow problem. ' The
related "scheduling problem!' involves optimizing a function (such as cost)
while meeting demand, capacity, and time related.constraints.

P.: Multi-models: These models involve multiple commodities,

5
copies, modes, etc. that generalize other models., Examples are the

multicommodity version of the Hitchcock-Koopmans Transportation
Problem (P7); traffic assignment for multiple classes of users (generalizing
Pl); transportation infrastructures involving a choice of several modes;

multiple copies of networks in dynamic analyses.

P6: Stochastic Demand Models: These models ask for solutions to
the other categories but with data that are probabilistic rather than
deterministic. Examples are probabilistic demands, Markov decision
models, queuing congestion problems, etc.

P7: Hitchcock-Koopmans Transportation Model: This model (and

its generalizations) asks for the flows from m origins to n destinations

along links that may be capacitated, with costs which are either linear or
convex in the flows, and so as to satisfy prescribed supplies and demands.
This category also includes the transshipment problem where ;everal
network nodes are transit points, the bottleneck transportation problem
with consideration of congestion, and the fixed charge problem with
positive link costs for zero flows.
P8: Routing, Traveling Salesman, Longest Path Models: This

category of network optimization problems involves combinatorial or

graph theoretical considerations that place them outside the earlier



categories. Either the specification of the constraints or the nature
of the objective function requires complex combinatorial analysis.
Examples include routing problems such as the traveling
salesman problem (minimizing total distance while visiting each node
exactly once), maze problems, and finding the longest path between
two nodes.
P,: Socially Oriented Models: These models use networks as

2 .
incidental to a related socially oriented objective. These include such

questions as the optimality of network planning, the realism of network
design, data reliability, traffic control, and investment policy. In

general, network methodology is secondary in these models.

PIOE Mathematically Oriented Models: Although motivated by
applied network problems, these models are 'once removed" from
transportation planning. As such they are formulated in purely mathema-

tical terms. Included in this category are problems of abstract

geometric design, graph theory, cémbinatorics, or matrix algebra.

Pu: Location Models: These models ask for optimal location of
facilities (which affect the supply and demand at origins and destinations

in other models) so as to minimize cost or maximize flow.



3. Aggregation Methods

Informally, aggregation means any method that transforms a

given model into a model that is smaller in one of its parameters
(say, the number of links, nodes, etc.). The second essential ingre-
dient of an aggregation method is that a rule be given by which solutions
to the smaller or aggregated model can be 'lifted' to meaningful
solutions to the original proble:h. Schematically, this can be represented
as follows: Let M cienote the original model, M, the aggregated model.
Optimal solutions are denoted by S(M) and S('l\—/f), respectively. Feasible
values are denoted by F(M) and F(M), respectively. The 'lifting
operation'' is a mapping L from F(M) to F(M). Given S GS(ﬁ) CF(L—/['),
the requirement that the lifted solution be meaningful is expresséd as
L(S) € F(M). Ideally, L(S) € S(M), that is, the lifted solution of the
aggregated problem is a solution to the original problem. In actual fact,
most aggregation methods, with one notable exception, only approximate
solutions to the original problem. Therefore, the essential questions to
be asked center on how well the lifted solutions approximate solutions to
the original problem.

. For any aggregation method applied to any network model, there are
a set of standard questions that can be put which evaluate the efficacy of
the method. These are listed below:

(A) What are the savings (say, in computational operations or

time) in computing lifted solutions of the aggregated model versus

computing exact solutions to the original model? Of course, this question



is only well formulated for a combination of a network model, an
aggregation method, and a mathematical technique of solution.

(B) Can errors in the lifted solutions be bounded? Of course,
this question can be posed at two levels, a macro and a micro level.
In most network models, the solution consists of a value for an
objective function (such as total system cost) and values for opera-
tional parameters (such as flows). In general, we shall consider net-
work values as macro and values associated with network elements as
micro. :

(C) Can biases in the lifted solutions be determined? (The same
distinction between macro and micro m.acie in (B) holds here.)

(D). Can any statistics (e.g., mean or variance) of errors in the
lifted solutions for relevant populations of models be estimated? (Again,
the distinction between macro and micro holds.)

We have identified two main types of aggregation methods:

Ay Hierarchical: These methods depend on the recognition of
a hierarchical structure in the given network. This structuring, which
involves a process of valuation, orders the elements of the networks
(e.g., nodes, links, paths, or chains) according to their importance or
similarity, possibly merges them, then breaks off each dominant class
from the one below. This can be done either arbitrarily, by numerical
valuation, or more organically - as the qua.ntita.ti;re becomes more
qualitative - according to type (e.g., arterials versus feeder roads).

The hierarchical me;:hods further classify as extraction or

abstraction of network elements. These will be stated for links below;

however, the same methods have been studied for nodes and paths in

our research.



Link extraction: This means the judicious removal of links

deemed to affect the solution only minimally, by some numerical or

qualitative criterion.

Link abstraction: This means the substitution of an "abstract"

link for a set of actual links. For example, a set of '"parallel' links
can be replaced by a single abstract link of equivalent total capacity,
or a set of '"series'' links can be replaced by an abstract link of
equivalent total length.

AZ: Intrinsic: This type of aggregation method seeks out an
inner structure whose elements are ontologi;:'.ally not on the level of
the original network elements - and it is this intrinsic abstract
structure that is then represented by the aggregated network.

The unique example of this type of aggregation that we have
studied is the Gomory-Hu Flow Analysis a.lgoritl;nz. This aggregation
method replaces the original network by a flow equivalent tree, whose

succession of links corresponds to a succession of nonintersecting

minimal cuts in the original network.

10



4, Research Results

Our research has centered on an attempt to answer Questions (A) -
(D), cited above, posed for the known aggregation methods applied to a
subset of the most important network models. In terms of the diagram

of the Introduction, this means studying these questions for the following

combinations:
Equi- Shortest Max Hitchcock
librium Path Flow Koopmans
. Extraction
Hierarchical -
Abstraction
Intrinsic

Although our choice of a model to study in detail was the equilibrium
model, the other models have proved to be suggestive of techniques and
provide illuminating examples of phenomena that we believe carry over to
the equilibrium model,

The results of our research are abstracted below, Papers 1l and 2
are aimed at Question (B) above, using the application of duality theory
from mathematical programming. In effect, this idea needs the following
ingredients to be successful:

(1) The formulation of the model as a mathematical program.,

(2) The formulation of a2 dual mathematical program.

(3) A lifting rule that converts primal and dual optimal solutions
to the aggregated model into primal and dual feasible solutions to the

original problem,

11



When these three elements are present, a bound can be given on the
error in the (macro) objective function for the lifted solution.

A second major accomplishment is the formulation of a new algorithm
for the equilibrium model that depends on a path extraction aggregation.
Paper 3 provides evidence of the potential performance of this new algo-
rithm and a detailed description of its detailed structﬁre.

Paper 4 is a direct first attack on Question (A) above. Paper 5
presents results on aggregation test networks and attempts to formulate
specific aggregation methods and lifting rules for the equilibrium models.
Papers 6 and 7 present specific mathematical results on two aggregation

related problems. The abstracts of all the papers follow.

12



Abstract 1. Bounding Aggregation Error in Network Models

This paper describes a new technique for measuring the error
introduced in the optimal answer to a network model by aggregation
methods. The technique can be explained as follows: Let M denote
the original model, M, the aggregated model. Optimal solutions
are denoted by S(M) and S(I\—II), respectively. It is assumed that the
model is formulated as a (primal) mathematical program with a dual
program available. Feasible solutions to the primal and dual
programs are denoted by P(M), P(l\—/I), D(M), and D(M), respectively.
Optimal solutions to the smaller or aggregated model are assumed
"lifted' to feasible solutions to the original problem. This is represented

in the following diagram:

FDeD(M) FPeP(M)

Algorithm e SD €D(M) *§P eP(M)
\

\

Bounds for the aggregation error are provided by the following

inequalities:

A

Value of FD S Optimal value for M S Value of FP

Aggregated value
for M.

In this paper, this idea is applied to node abstraction for the

Hitchcock-Koopmans transportation model.

13



Abstract 2. Bounding Aggregation Error in the Equilibrium Model

This paper describes the application of the technique developed
in Paper 1 to the equilibrium model (in both descriptive and normal
form). By means of several simple test networks and representative
cost functions, the various pieces of the theory are illustrated. Thus,
the essential features of a theory applicable to more general combinations
of aggregation method and mathematical technique are identified. These
are primarily the construction of dual solutions and the efficient lifting

of both primal and dual solutions.

14



Abstract 3. A Path Extraction Aggregation Algorithm

This paper presents a new algorithm for the network equilibrium
model that works in the space of path flows using a labelling and
pivot technique. A detailed set of specifications is given, convergence
to an optimal solution is proved, and estimates of computational

efficiency are provided.

15



Abstract 4. Computational Savings from Aggregation

This paper considers the question of measuring the savings to
be achieved by applying an aggregation method to a network model
solved by a mathematical technique or algorithm. The aggregation
method reduces the number of network elements (links, nodes,
oD pa.irsl, etc.) and this in turn reduces the number of multiplications,
additions, and comparisons performed. Estimates are given for

examples of all aggregation methods and all network models.

16



Abstract 5, Aggregation Test Networks

This paper describes an example constructed at MATHEMATICA
for testing aggregation methods of the equilibrium model. It is
based on the Massachusetts road distance network with OD demands
derived from a pﬁmitive gravity model. A variety of mathematical

techniques and aggregation methods can be tested on this example.

17



Abstract 6. Aggregation by the Extraction of a Transversal Link

This paper gives a complete and rigorous treatment of a simple
case of aggregation by link extraction. This case is illustrated in

the figure below:

Destination

This case is the ex.tra.ction of the single link (5) between two chains
(12 and 34) joining the OD pair. It is assumed that a flow of x units
on link i costs Aix+ Bi, where Ai >0 and Bi >0 for i=1,...,5.
The main result states that the aggregation cost (for the des-
criptive, user-optimized, equilibrium model) with an OD demand of K

units is

-A(-AK + V)
AZ

where A = AjA, - A A, 2 - Aj+A,+A+A,,

_ 2
A= (A +A,+AL) (A +A +A) - AC >0,

18



-AK+Y%Y >0, and ¥ is a polynomial in {Ai, Bi}.

Interpreting the above model in terms of link insertion instead
of extraction, this result completely characterizes the so-called
"Braess Paradox, ' where the addition of a link increases the travel
cost of every individual. The Braess paradox can occur if and only if
the aggregation cost is negative (that is, 4 >0), and the demand K is

bounded above and below by certain polynomials in { Ai , Bi} .

19



Abstract 7. Bounds and Estimates for Average Speed per OD Path

In a large transportation network, with n, origins, n,
destinations, and an average of p paths joining each OD pair, the

computation of the average speed vV per OD path requires summing

Pn; D, products ng vg D » Where fSD is the quantity shipped

from O to D along path a with average speed V‘SD.

By aggregating flows out of every origin and into every
destination, this paper gives upper and lower bounds, M and m,

and an estimate M-;m of Vv requiring the summation of only

2(n1+n2) products.

If the origins and destinations are disjoint, the path character-
istics are completely determined and expressed in terms of link
characteristics (usually the only information available). If some
nodes are both origins and destinations, then additional information
regarding the flow into or out of these nodes is required to determine

path flows.

20



5. Directions for Further Research

We believe that the results contained in this report establish the
conclusion that research in aggregation is a promising area that will yield
new methodology to extend the range of transportation planning., The
subject is still in its infancy; however, we have identified a number of
directions that should yield useful results. These fall roughly into three

categories, which are described in detail in the last section of this report:

1) Theory of Network Aggregation
(II) Algorithms Related to Network Aggregation

(II) Network Aggregation and Transportation Planning.

+21/22






B, TECHNICAL PAPERS
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PAPER 1

BOUNDING AGGREGATION ERROR IN NETWORK MODELS

1. Introduction

The basic question to be asked of any aggregation method is:
What confidence can we place in the answers obtained through its use?
More precisely, what can we say about the answers obtained from the
aggregated network compared with the exact (but unavailable) answers
for the original network with its full detail? The object of this papér is
to describe and illustrate a new technique for answering one aspect of
this question, namely: can we calculate upper bounds on the errors

inherent in the answers which have been "lifted" from aggregated models?:

2, Aggregation Methods and Lifting Rules

We start with a network model M. As understood here, this
means a network with numerical (such as capacities) or functional (such
as cost) characteristics for its elements and an (optimization) problem
posed for this network. For example, we may be given a directed net-
work with one source and one sink, with positive capacities given on all
of the links, and ask: what is the maximum feasible flow from source
to sink on this network? Optimal solutions for the problem posed on the
network will be denoted by S(M). The set of feasible solutions for the
problem will be denoted by P(M) and we shall assume, without loss of
generality, that the optimization problem is a minimization problem,
This means that we are seeking a feasible solution FP ¢ P(M) such that

its value is least among all feasible solutions in P(M).

24



The aggregation method produces a network model M. As under-
stood here, this means a network (smaller than M) with numerical or
functional characteristics for its elements constructed from those of M
and with an (optimization) problem posed for this network. We shall
also impose another, very important requirement. Every feasible
solution for the aggregated model M must be capable of being "lifted"
to a feasible solution for the disaggregated model M. Precisely, there

is defined a lifting mapping L,

L : P(M) ——e P(M).
into
Of course, it is hoped that the aggregated problem can be solved exactly
and so the feasible solutions from P(M) to be lifted are optimal solutions
for M, denoted by SP ¢ P(M). With this background, the question we )
pose is: can we calculate an upper bound on the error in L(SP) = FP ¢ P(M)?
Before we introduce the technique for calculating such a bound,
we shall introduce an example of the concepts defined thus far, to which
the technique will be applied later in this paper. The example is the
Hitchcock-Koopmans Transportation Problem., The network is a directed

graph with m + n nodes, called sources (m)and destinations (n) with a

link from each source to each destination. The characteristics are
(positive) supplies a; at each source, (positive) demands bj at each
destination, and (nonnegative) unit costs cij on each link, The

optimization problem is then:

25



Find xij 20 (i=1, .ee, m; j=1, ..., n) such that

Zj xij = a, and Zi xij = bj (feasibility)

and minimizing Zi x;. (optimality) .

o5 ©1j ¥4
(Naturally, to insure feasibility, we have assumed Zi a, = Zj bj .)

A "natural" aggregation method is to combine similar destinations,
which may be thought of as customers. Of course, the heart of the

matter lies in the definition of ""similar.!" However this will be left

undefined for the moment. Assume that

N={,...,00 =N,uU s UNY

where N N Np =¢ for k#{. Define by =Zj‘Nk bj and
Fik = Zj Nk bj cij /T:-k for k=1, ..., p. This specifies the

aggregated model M. The network is a directed graph with m + p nodes,

called sources (m) and destinations (p) with a link from each source to

each destination. The characteristics are the (positive) supplies a,,
the (positive) demands Fk’ and the (nonnegative) unit costs ;ik on each

link, The optimization problem is then:

26



Find x, > 0 (i=l, ..., m; k=1, ..., p) such that

ik =
Zi Xy = % and Zi ik = Pk (feasibility)
and minimizing Zi K E‘ik Eik (optimality).

The lifting operation may be defined in many ways. A direct (and rather

bad) operation is

xij = bj xlk/bk for Jka.

This insures feasibility of the resulting shipments since:

ZJ xij = ZJ bj ;lkls-k

i
'Y

3. Duality and Error Bounding

For all of the models that have been used prominently in
transportation planning, the optimization problem may be formulated
as a mathematical program which has a dual mathematical program,
Feasible solutions for the primal and dual programs are denoted by
P(M) and D(M), respectively. The principal property of these programs

that we shall use is the following:

27



Value of FD ¢ Optimal value for M ¢ Value of FP for
any FDe¢D(M) and any FP ¢P(M). This basic property can be used to
provide a bound on the error from an aggregation method, provided
that the optimal solutions for both the primal and dual for M can be
lifted to feasible solutions for both the primal and dual of M.

Schematically, this is represented by the following diagram:

FD ¢ D(M) and FP ¢ P(M)

a [

ALGORITHM SD ¢ D(M) and SP ¢ P(M)

A bound for the error in the aggregated solution is provided by:

value of FP - value of FD
% of error in FP = x 100
value of FP

The difficulty in applying this basically simple idea to actual

aggregation methods consists in

(1) formulating the dual program in such a way that the
solution is readily available;

(2) defining efficient lifting rules that preserve as much of
the information in the optimal solution as possible.

The ideas of this section can be carried out with complete rigor

for the Hitchcock-Koopmans Transportation Problem. The dual

program is;

28



Find ul and Vj (i - 1, o8 0y m;j= 1’ sse ) n) Suchthat

C..

. + v,
¥ J 1)

1

uA

and maximizing Zi a; u + Zj bj vj .

When aggregated as above, the best lifted feasible solution for the dual

program is defined to be:

ui = ;l-i (i=1, ceey m)
Vj =mj.n(cij'a-i) (j =1' esow0y n)o

This definition satisfies all of the requirements of the diagram above

and hence the error bound holds,

4, An Example

To demonstrate the effectiveness of the ideas introduced above,
a (geometric) Transportation Problem was constructed with 3
sources and 100 destinations. The 3 sources (and supplies) are shown
in Figure 1. (Precisely, a, = 87, a

= 132, a, =258,) The 100

1 2 3
destinations (and demands) are shown in Figure 2, The unit costs are
calculated as rectangular distances in the unit grid, that is, if two points
have coordinates (xl, yl) and (xz, yz), then the distance between .
them is 'xl - le + lyl - yzl . Thus, the distances from the upper
left hand square to the three sources are 8, 8, and 15 respectively.

A '"nmatural" aggregation of the 100 destinations into 4 aggregated

destinations is shown in Figure 3. This aggregation is not too dissimilar

to actual techniques for creating ''zones' or ''centroids' in transportation
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87

132

258

FIGURE 1. LOCATION OF SOURCES FOR ILLUSTRATIVE TRANSPORTATION PROBLEM
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| 4% 1 5 4 6 3
2 | ex | 5 4 9 6 4
7* 7* 2 4 6 5 3
3 8 5 1 6 6 4
6 4 9 7 6 2 2
5 8 | 8 1 3 1 8
4 5 1 3 8 8 6
3 7 7 9 3 7 4
6 5 2 5 2 2 7
9 4 7 2 1 8 7

FIGURE 2. LOCATION OF DESTINATIONS FOR ILLUSTRATIVE
TRANSPORTATION PROBLEM
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FIGURE 3. '"NATURAL" AGGREGATION OF DESTINATION FOR ILLUSTRATIVE
TRANSPORTATION PROBLEM

32



planning., The result of this aggregation is the model M presented
below, in which the left column lists supplies 2., the top row lists

the demands B—k’ and the entries are the unit costs Eik (see p. 26).

A B c D

110 114 131 122
87 5,12 2,42 9.21 6. 43
132 4.90 8. 72 2.56 6.55
258 10. 74 6.51 .21 2.57

1

This 3 by 4 Transéortation Problem is easily solved. The
optimal solutions for primal and dual are exhibited below, in which the
left column lists u., the top row lists v, and the entries are the

shipments x ik

A B C D
4.90 1.80 2.56 -2. 14
0.22 87
0 23 109
4.71 114 22 122
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If the primal is lifted by the rule on p. 27, the total cost is 2052. 8.
(This can be improved by allocating the purchases by customers in A and
C to the nearer warehouse as far as possible. The resulting value of
the lifted primal is 1925.68.) If the optimal dual solution is lifted by the
rule on p. 29, the value is 1762.53. Thus the error bounds are 14% and

8%, respectively. By aggregation, a 3 by 100 Transportation Problem

has been solved within 8% by lifting the optimal solution of a 3 by 4
problem. |

The dual problem suggests a geometric aggrega.tic;n that is better
than the quadrants of Figure 3. The decision of any customer j will not
be changed if all of his costs are changed by the same constant -cj. By

the transformation

(clj’ ch’ °3j) — (o::lj - cj, cZj - cj, c3j - cj)

for 3cj = c1j + ch + c3j, we can “"normalize'' all customer costs to sum
to zero. Two customers who were distinct before may now have the
same costs. As an example, the 9 starred customers in Figure 2 all
have the normalized costs (- I3 -3—) . The geometry of this trans-
formation is shown in Figure 4, where the original 100 customers have
only 40 distinct normalized cost vectors. The numbers give total
demands at these points in the plane c, + c, + ¢y = 0. For example the
9 starred customers in Figure 2 are shown as one customer with

demand 40 (shown with a star).
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To s‘umma.ri,ze, the numbers in Figure 4 give the total demand for
each normalized cost vector graphed. This is an exact aggregation of the
original 100 destinations into 40 destinations.

Figure 4, combined with the dual variables from the previous
aggregation, suggests a second level aggregation by the following
reasoning. We have already noted that the optimal shipments are not

changed by transformations of the form

(clj’ ch’ c3j) ..___. (clj - cj, CZj - cj, c3J. - cj).

The same statement holds for transformations of the form

(clj’ ch’ c3j) _"'(clj -uy - cj, ¢:zj -u, -¢C; Cy -y - C.).

Moreover, if the resulting points are projected in the plane cyte,+eye= 0
by the correct choice of cj, optimality is assured if and only if we
choose (ul, u,, u3) so that the demands bj can be allocated to the three

closed sets KI’ IZ’ K3 that are the projections of the three quadrants:

Ay = ey oy c3)/ ¢, =0, ¢, 20, ¢, go}

A

2 {(cl, 5s c3)/ < 20, c, = 0, c320}

A

3 {(clp cza C3)/ Cl g 0, CZ g 0, 63 =0}’
so that a total of a, falls in Ki for i =1, 2, 3. This is illustrated

in Figure 5 where the optimal values of (ul, u,, u3) = (0, 0, 5) are
used and demands which fall on the boundary of the resulting frame are
split as shown. This yields:

Optimal value of P(M) (or D(M)) = 1780,

35



W\
4 40*
+16
+11 4+ 5
+15 +§
+18 +8 4 7
+1 +1
+53 +3 43

+32

+8

+1

+6

+13
+9

+6 +17
+6

+2 +10

FIGURE 4. AGGREGATION OF DESTINATIONS SUGGESTED

BY THE DUAL PROGRAM
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+16 . +8

.'+16 | +8 +2 +23
+6 +8 +8
+23 : | +11
+12
+21
+32 .

FIGURE 5. SECOND LEVEL AGGREGATION
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+16 +8 +2 +23

+6 +8 +8
+23 +11
+12
+21
+32

FIGURE 6. AGGREGATION INDUCED BY OPTIMAL DUAL SOLUTION
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and reveals that the lifted value of the dual computed previously
(1762, 52) was very good indeed.

The last calculation depended on having available an optimal
solution for D(M), and hence is not allowed with the information available.
However, we are entitled to use the lifted optimal solution for D(M) !

Of course, we will not in general be able to achieve optimality by

A,, A,. However, we can

1” 772”773
enlarge these sets by a given tolerance (the amount 0.5 is appropriate

distributing the proper amounts to A

in the present case) and create aggregated destinations corresponding to

the following sets:

Destination Set
1/2/3 ANA,NA,
1/2 ANA, -K NA,NA,
1/3 ANE; -2 NEK,NE,
2/3 _ fz“—s -ANA,NA,
1 A - &ZNE+ Iln_7\.'3) +&,N Kznz3)

) P e N -
, - & NE, +E,nE,) +E,NE, nA3)

3 AT LT T T AT
x, - &%,NE; +E,nE,) +E,NE,NE,)

This duality induced aggregation is shown in Figure 6. Returning to our
original geometry, the assignment to aggregated customers is shown in

Figure 7. The aggregated model M is displayed below:
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1/2 1/2 1/2 1 1 1 l 1/3
1/2 1/2 1/2 1 1 1 1 1/3
1/2 1/2 1/2 1 1 1 1 1/3
2 2 2 1/2/3] 1/3 1/3 1/3 | 3
2 2 2 2/3 3 3 3 3
2 2 2 2/3 3 3 3 _3
2 2 2 2/3 3 3 3 3
2/3 2/3 2/3 3 3 3 3 3
2/3 2/3 2/3 3 3 3 3 3
2/3 2/3 2/3 3 3 3 3 3
ASSIGNMENT TO AGGREGATED CUSTOMERS,

40

IN ORIGINAL GEOMETRY




1 2 3 1/2 1/3 2/3 1/2/3

57 60 221 40 23 71 5

87 2,60 | 7.45 6.07 5.73 1.78 9. 62 4
132 7.77 | 2.28 6.57 5.73 7.96 2.86 4
258 9.19 | 9.28 3.77 12,73 6.78 7.86 9

This 3 by 7 Transportation Problem has the optimal solution
exhibited below:

2.60 2.28 -1.23 5.73 178  2.86 4
o |57 30
0 60 10 62
5 221 23 9 5

The value of the lifted primal (using the unsophisticated method of
Section 2) is 1796.4. The value of the lifted dual is 1780. Hence,
the error is less than 1%. Finally, if the sophisticated lifting of

the primal is used, then the lifted primal feasible solution is optimal.
That is, by solving a 3 by 4 and a 3 by 7 problem, we have solved a

3 by 100 problem exactly.
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5. Automatic Multilevel Aggregation

The example above was started with a ''natural'’ geometric
aggregation into four zones. However, the subsequent aggregation
by dual variables suggests that this is not necessary and that we may
start with the most gross initial aggregation of all destinations into
one destination. Subsequent aggregations are carried out by guides
provided by the dual variables, The course of the calculations is

illustrated below (using only unsophisticated lifting):

LEVEL 1:
477 5.59
87 5.93 0.34 87
258 | 6.69 .| Optimal .10 | 258 LIFTED DUAL:1486. 5
ERROR BOUND: 50%
LEVEL 2:
181 151 145 3.07 2.63 -2.74
87 3.80 8.59 6,47 0.73 87
132 7.90 2,63 6.14 — 0 132
258 8.59 8.15 2.78 Optimal 5.52 94 19 145

LIFTED PRIMAL: 2043,2

ERROR BOUND: 15%
LIFTED DUAL: 1726.7

LEVEL 3: SAME AS 3 BY 7 PROBLEM ABOVE ; ERROR BOUND: 1%.

42



PAPER 2
BOUNDING AGGREGATION ERROR IN THE EQUILIBRIUM MODEL

1, Introduction

In Paper 1 we have seen the application of a2 new technique for
bounding aggregation error and for using dual variables to guide efficient
and accurate aggregation, The purpose of this paper is the generalization
of this technique to the traffic assignment model.

The fundamental ingredients for this technique are described in
detail in Section 3 of Paper 1. We shall not repeat this here but note
that the following elements are necessary for its successful application:

¢1) The original model must be formulated as a (primal)
mathematical program;

(2) This primal program must possess a dual program that can
be calculated in some form from the data;

(3) Primal and dual programs should enjoy the properties (using
the notation of Paper 1):

Value of FD £ Value of FP
and equality should hold for optimal solutions;

(4) The algorithm that solves the model should provide optimal
primal and dual solutions;

(5) An aggregation method should be available with a lifting rule
that takes optimal solutions for the primal and dual aggregated model.
versions| into (good) feasible solutions for the diéagE;_gated model.
When these five ingredients are present, a rigorous bound can be

found for the lifted feasible solutions for the disaggregated primal model.
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Paper 1 showed that all five features are readily available for the
Hitchcock-Koopmans Transportation Problem, In the remaining sections
of this paper, we shall show by theory and example that the equilibrium
problem has features (1) - (3) and shall indicate some suggestions on

how to complete these by (4) and (5) to a complete theory.

2. A Sketch of Fenchel Duality Theory

The purpose of this section is to describe the necessary elements
of Fenchel duality theory for reference later in the paper. (These ideas
were introduced by Fenchell. An excellent presentation can be found in
Karlin2 or Rockafeuar3.)

Suppose we seek to minimize a convex function over a convex set.
For the purposes of the theory, this problem is set in a special form:

Suppose f is convex on the convex set C and g is concave on -

the convex set D, We seek

inf [tx) - g,
xeCND

1W. Fenchel, Convex Cones, Sets, and Functions, Dept. of Mathematics,

Princeton University, 1953.

zS. Karlin, Mathematical Methods and Theory in Games, Programming,

and Economics, Vol, I, Addison-Wesley, 1959.

3T. Rockafellar, Convex Analysis, Princeton University Press, 1970.




(In many applications, g(x) is taken to be zero and the advantage of

this generalization comes from the choice of D.) If we define the set

set [f, ]'in RXX as
[f, C] = {(r, x)| x €C, f£(x) 2 r}.

then the problem can be interpreted as finding the minimum vertical
separation between the sets [f, C] and [ R D] as shown in the figure

below:

| &

It is obvious that this is equal to the maximal vertical separation of
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two parallel hyperplanes separating [f, C] and [g, D] . This relation,
between a given minimization problem and an equivalent maximization
problem is the duality we shall use.

The analytic tool for expressing this precisely is the concept
of conjugate function (also due to Fenchel).

DEFINITION., Let f be a convex function defined on a

convex set C. The conjugate set

o () -] < o)

and the function f* conjugate to £ is defined as

* %k
Fx*y = sup <:,x - f(x)] .
s (&) -]

(Throughout this definition, x*-‘ denotes a linear function and <x, x*>

C* = {x*c X*

denotes inner product,)

Since - f*(x*) is the vertical distance to a support hyperplane
below [f, C] " and -g*(x*) is the vertical distance to the parallel support
hyperplane above i’:g, D] ’ g* (x*) - f* (x*) is the vertical separation of
the two hyperplanes, The duality principle stated above leads to the
following theorem.

FENCHEL DUALITY THEOREM. Assume that £ and g are,
respectively, convex and concave functions on the convex sets € and D
in a space X, Assume that CND contains points in the relative interior

of C and D and that either [f, ] or [, D] has nonempty

interior. Suppose further that
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inf [f(x) - g(x)] <
xeCND

then g¥*(x*) - f*(x*)é f(x) - g(x)
for all ""feasible' x¢CND and x*€C*ND* and

max [g*(x*) - f*(x*)] = inf [f(x) - g(x)] .
x*€C*ND* xeCND
This theorem provides exactly what is needed for requirement (3)
stated in the Introduction. Of course, to carry out the construction
explicitly we must compute conjugate functionals having chosen C and D

appropriately. This is exactly what we shall do in the next section.

3. Duality for Equilibrium Models

For the discussion of equilibrium models we shall use the

’

following notation:
OD pair: ke{l, ..., p P
Path joining OD pair k: kje{kl, ..., kn, | .
Link: fe{1, ..., q}.

Link-path incidence matrices: (A(l), ooy A(P))
Al o (a(;;’)where a(};) = 1 if link { is on
path kj joining OD pair k and a‘}‘j) =0

otherwise.
Demand on OD pair k: d.k .

Flow on path kj : ka. .
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(k)
Induced flow on link f : xp = Zk<zj ap; ka>
User cost for flow xp ¢ C! (xf) 2 0 increasing.

Cost of path kj joining OD pair k induced by flows

. _ (k)
(x5) + Cpy () = Zf!j Cp (xp).

EXAMPLE: p=1, n =3, q=5, d, =6

all) .

O O O = =
~ O = =~ O
O = = O O

Cl(x) = C4(x) = 50 + x, .Cz(x) = C3(x) = 10x, Cs(x) =10 + x.

(This is the description of the example used by Steenbrink to
illustrate the paradox of Braess.) It is well-known that the descriptive
assignment (user optimized) and normative assignment (system optimized)

can be formulated as mathematical programs. These are stated below:

DESCRIPTIVE ASSIGNMENT: Choose (xkj) so as to minimize

1
Z”of Cp(x) dx subjectto  xp = Zk(zj N "kj)‘

Zj x'kj = d.k and xkj 2 0.
NORMATIVE ASSIGNMENT: Choose (xkj) so as to minimize
C, (x)x subject to x, = b a® x

Z? I b 1 Z k | <j J§ ka

DL S S
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EXAMPLE (continued): The two problems (stated in path variables) are:

DESCRIPTIVE ASSIGNMENT: Choose (xu, X1g9 x13) so as to

inimize

+ 112>, + 20x + 20x + 100x

2 2
1/2 (llx'l + 21x 13 11%12

1 12 + 20x

12*13 11 12

subject to:
Xy P X, tx = 6.

2 > 2
xll 3 0, 812 - 0, 813 = 0.

NORMATIVE ASSIGNMENT: Choose (xll’ X159 x13) so as to
minimize:

2 2 2
llxu + 21x12 + 11x13 + 20::11:;:12 + 20x12x13 + 50x11 + 101:12 + 50:;:13

subject to:

X1, +x12 +x13 =6

> > 2
X1, £0, X5 20, x13 £ 0.

To illustrate the construction of a dual for the equilibrium model,
we shall first transform the DESCRIPTIVE ASSIGNMENT from path

variables to link variables. Note that:

¥ TE TR X Xy I X b L Xy TRy, X5 =X,

and hence the constraints on the path flows

x4 +x12 +x13 = 6

> > >
%180 x,20 x%,:0

are equivalent to the constraints on the link flows:

49

+ 100x



F
[
t
[]
W
w
+
w
N
+ +
KoM
g |
TR |
o o

xlgo, ngo, x3_>,_0, x4g o, x5_>__o.

DESCRIPTIVE ASSIGNMENT (Link variables) Find (xI) so as
to minimize

2 2 2 2 2
(50x1 + 1/Zx1 ) + 5:::2 + 5x3 + (50x4 + 1/2:1:4 ) + (10x5 + 1/2x5 )

subject to the constraints above.

It is clear that all three of the problems formulated above are
quadratic programs with strictly convex objective functions to be minimized
and constraints that are linear. This will be true in general for models -
with linear user costs on tl';e links. This also means that the dual programs
are readily available in various forms from the special theory of quadratic
programming. However, we wish to use this example as a paradigm for
the construction of a dual by the Fenchel duality theory. We shall do this
for the DESCRIPTIVE ASSIGNMENT with link variables.

EXAMPLE (continued):
Let £(x) = (50x, + 1/2x12) + SxZZ + 5x32 + (50x, + 1/2x42)
2
+ (10x5 + llzx5 )
g(x) =0

C {x|xgo}

D {x|x1+x4+x5=6, x, - x, + x, =0, -x3+x4+x5=0}.

The function conjugate to g is
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g¥(x*) = sup <x*, >
xeD

This is only finite when
x¥ = Yl (1,0,0,1,1) + Yz(ln -1,0,0,1) + Y3(0: 0,-1,1,1)

and g¥*(x*) = 6y1. Each of the summands of £(x) have the form
ax + bxz. An elementary calculation shows that the conjugate function

has the form (x* - a)zl 4b, Hence the dual program is:

2 2 2
. (y) + v, - 50) V2 Y3
Maximize 6y1 - — - 35 " 30

2 2
(yy +v5 - 50) (vy +v, vy - 10)
- i -

where vy, ¥y, and y, are unrestricted.
To complete this example, the unrestricted maximum problem

is easily solved yielding
¥y = 92, y, =y, = -40.
These values determine values of xg (via the conjugate functions) as:
x1=2, x2=4, x3=4, x4=2, x5=2.

The common value of the objective function is 386. (Of course, the link
flows above correspond to path flows X1 = Xy = xlé = 2 with total user

cost of 552.)

4, Conclusions

This example is typical of the problem of formulating the program

dual to an equilibrium model and proves that it poses no intrinsic theoretical
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probiem. Of course, the computation of the conjugate functions was
specially simple for this example. However, the computation appears
to be just as simple for any of the cost functions that have been used
in the traffic assignment literature.

Two fascinating properties have appeared in the formulation of
the dual. The dual set D* was spanned by two types of vectors. The
first is (1,0,0,1, 1) and is a cut set separating the OD pair. The second
types are (1,-1,0,0,1) and (0,0, -1, 1,1) and correspond to the
conservation requirements at the nodes. It is conjectured that these
properties hold for more general networks and that this fact will also
yield useful infar mation for the lifting of aggregated optimal solutions.

Secondly, the only dual variable that contributes to the linear
part of the objective fu.nction is the cut set v_a.riai:le Yye The value of

) the linear part at the optimum is 552, the user optimized cost. It is
also conjectured that this property generalizes.

Finally, in order to carry out our complete program, we still
need features (4) and (5). Paper 5 makes a start at formalized aggregation
rules on test networks. As for algorithms which compute simultaneously
primal and dual solutions, they are not available in the form in which
they can be used at present. Therefore, further research is called for

to carry out this program completely.
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PAPER 3
A PATH EXTRACTION AGGREGATION ALGORITHM

1, Introduction

This paper presents a new algorithm for the network equilibrium
model that works in the space of the path flows using a labelling ana
pivot technique, A detailed set of apeciﬁcaﬁons is given, convergence
to an optimal solution is proved, and estimates of computational efficiency
are provided. Since the description that follows is quite concise, some
account of the relation of this algorithm to other similar methods and of
the relevance of this development to aggregation must be given,

The terms ''labelling and pivoting'' have been used in computing
economic equilibrium for about eight years since the initial work of '
Scarf 1 in this area. Since then the methods have been developed and
extended by a number of other mathematicians and economists. (A
comprehensive survey by Kuhnz has a bibliography of 42 items.)

The idea behind the pivotal methods that is extended to the traffic
assignment problem in this paper can be motivated by a classical model
of equilibrium in an exchange economy. This economy trades n goods
indexed by k=1, ..., n with prices Pys eeos Ppo A price vector .

P=(p 1> cees pn) generates supply and demand for each of these goods

IH. E. Scarf, "The Approximation of Fixed Points of a Continuous

Mapping," SIAM J., Appl. Math, 15 (1967) 1328-43,
ZH. W. Kuhn, "How to Compute Economic Equilibria by Pivotal
Methods, " Mathematics Department, Princeton University, January,
1975.
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and their difference is called the ""excess demand function' for each good
k and is denoted by gk(p). These n functions are assumed to be continuous
and homogeneous of degree zero for nonnegative, nonzero prices. Also,
the prices and excess demands are assumed to satisfy Walras' Law which
says that expenditures equal revenues when summed over a.li goods, that
is,

P181(P) + <o + P 8 (P)=0 forall p 2 0.
Equilibrium for such a model is a set of prices p that generate a supply
that is not less than the dema'nd for each good, that is, such that
gk(l-:') £0 fork=1, ..., n. (Of coﬁrse, Walras' Law implies that
the price of a good with excess supply is zero.)

The algorithm works on the price simplex where prices are
‘normalized to sum to one and starts with the standard subdivision of this
simplex. The vertices of this subdivision are given labels by the
following rule:

A price vector p is given the label ke{ 1,2, ..., n} if the excess
demand for good k is smallest among those goods with positive price.
(In case of ties, choose the first.) A possible labelling for a case of 3

goods is shown below:

54



Of course, Walras' Law implies that:

(*) If the label of p is k then gk(p) < 0.
Furthermore, the rule for labelling implies that:
(*%) If the label of p is k then Py > 0.

Properties (**) is the hypothesis of Sperner's Lem:mal, which asserts
the existence of at least one triangle with all three labels. (In the figure
above, such a triangle is shaded.) ‘

This is enough to approximate an equilibrium arbitrarily closely.
For a fine enough subdivision, the points in the completely labelled
piece satisfy

g, (P) Se
. for given € >0, Hence they are nearly equilibria and approach equilibria
as € tends to zero.

In the algorithm that follows, the ideas of this simple illustration
are generalized and extended in the following ways:

(1) We work not on a price simplex but in the space of proportionate
flows joining OD pairs. Geometrically, this is the Cartesian products of
simplices.

(2) This product set is subdivided in an efficient way for con;puter
calculation.

(3) The appropriate labelling for traffic assignment equilibrium

is constructed,

1
C. B. Tompkins, '""Sperner's Lemma and Some Extensions' in

Applied Combinatorial Mathematics, E. F. Beckenbach, ed.,
John Wiley & Sons, 1964.
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(4) The technique of "restarting"]' is generalized to cover this
case,

- The algorithm is intended to apply to networks for which an extremely
accurate answer for equilibrium is desired., Furthermore, the algorithm
presumes the aggregation by extraction of paths. In common sense terms,
it is presumed that there are only a small number of candidate paths
joining each OD pair. In the notation of the next section, current computa-
tional experience suggests that inexpensive and very accurate answers can
be given to networks with (B +.ee ¢ np) -p $ 100, This will be
extremely helpful in studying other aggregation methods,

It should be remarked that, although the intended application of
this algorithm is to an extracted subset of the paths joining OD pairs,
if all paths are used, then the algorithm constructs (in the limit) an exact
equilibrium. Also, the extracted subset of the paths can easily be
modified on the basis of intermediate calculations. For example, we
may add a path if it is definitely cheaper than those in use or delete a

path if it has a nearly zero flow at the current approximation.

4. W. Kuhn and J. G. MacKinnon, "Sandwich Method for Finding

Fixed Points," J. Optimization Theory and Appl. 17 (1975)
189"2040
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Notation

OD pairs: k = 1,...,p.
Path joining OD pair k: j = 1,... Ty e
Link: [= 1,...,q.
Link-path incidence matrices: (A(l), oo ,A(p))
AL a.(;;) where a(;;) = 1if link / is on path j joining

(k) _
1;

OD pair k and a = 0 otherwise.

Demand on OD pair k: dk

Proportionate flows on paths joining OD pair k:

- : 2
= (xkl’”"xlcnk) € Snk, that is, all xkj < 0 and
ijkj =1
Flow on path j joining OD pair k: xkjdk'
Induced flow on link f :
_ s (k) )
fp = z"k<21 05 "5/ %
User cost for flow ff 2 cp (£) =>-.

0 increasing,

Cost of path j joining OD pair k induced by proportionate

flows (XI----,X ):

ck(xl,...,x ) = 2! cf(fl)
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3.

Label of proportionate flows (Xl’ oy Xp) :
L(Xl, P ,XP) = (jl’ cee ,jp) where
ckjk (Xl’ cee ,XP) is maximum of °kj(X1’ coe ,Xp) over j
with xkj > 0 (if ties, take jk largest such index).
Integer label of proportionate flows (Xl, eees X P):
If L(Xl, soe ,XP) = (nl, oo .,np) then

IL(XI,.-.,XP) n1+...+np-p+ 1.

If L(Xl,...,xp) (jl'“'"]p) and
j1 = 1:11,...,jk =, jk+1 <o for 0 £k < p-1 then

IL(XI’...’XP) = n1+ooo+nk+jk+1"ko

Preliminary Results

Theorem 1. If nt... +np-p+1 proportionate flows have the integer

labels 1,2,... ,n1+. . .+np-p+1 then given j, 0 S j s 0 there exists a

proportionate flow in the set with L = (jl’ coe ,jp) and jk = j. Thatis,

completeness in integer labels implies completeness of the (vector) labels

for each OD pair.

Theorem 2. If X = (-fla . ,fp) is a proportionate flow such that

in every neighborhood there are a complete set of integer labels then X

is a user-optimized equilibrium.,

Proof. Suppose ;kj > 0 and ;kj' > 0 and ckj(sf) < ckj,(f). Then,

if L(Xl,...,Xp) = (jl,...,jp), jk # j in a neighborhood of X since path

j is never the most expensive path joining OD pair k in this neighborhood

and xkj > 0 there.
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Hence ckj(f) is constant, say ck(f), for all j with xkj > 0.
Suppose x.kJ = 0 and ckj(X) < c. Then, if L(Xl’ o .,Xp) = (31, . .,JP),
i # j in a neighborhood of X since j # j when Xy = 0 and, when
xkj > 0, j cannot be the most expensive path. Thus we have verified the

conditions of an equilibrium.

Theorem 3. Consider any subdivision of S_ x.. .x‘Sn into simplices
P

of dimension n,+.. .+np-p+1 and give their vertices (vector) labels such

tha-t L(xl,-..,xp) = (jl,o-o,jp) implies xkjk> 0 for k'—' l,oou,Po

Then there exists a simplex of the subdivision with a complete set of

induced integer labels.

The following subdivision has been designed for efficient computer
implementation. It is called a subdivision of degree (D1 ses ey DP) where the
the D, are positive integers. A vertex of the subdivision is specified
by a vector of non-negative integers (Zl’ veey Zp) where Zk = (zkj) and
ijnj = Dk for k=1,...,p. (Note thatx, . = Dk defines the corresponding
proportionate flows; for computer work it is easier to work with integers.)
A simplex of the subdivision is a set of N+l vertices, where

N = n,+.. .+np-p, that can be arranged as:

Zq

(Zl,...,Zp)0

Z
n

(Zl,...,Zp)N

and
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Z =Zn+(...,E E ll-) for n=1,o¢o’N"1-

n+l k,j+1 " k,j’

In this definition, E_ . is the j° unit vector of S_ , and every kj is to
] nk
appear in the sequence exactly once for j=1,... ,n.k-l.
This definition is illustrated by the following example: Sz x S3
of degree (1,1).

The three simplices of the subdivision are:
Zy: ((1.0).(1;():0)) ((1,0),(1,0,0)) ((1,0),(1,0,0))
Z,: (o, 1),(1,0,0)) —((1,0), (0, 1.9)) ((1,0),(0,1,0))
z, ((o,1),(0,1,0)) ((0,1),(0,1,0))—((1,0),(0,0,1))

Z,: ((0,1),(0,0,1)) ({0,1),(0,0,1)) - ((0,1),(0,0,1))

This subdivision is shown in the following figure:

((0, 1), (0,0,1))

((0,1),(1,0,0)) ((0, 1), (0,1,0))

((1,0),(1,0,0)) ((1,0),(0,1,0))
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The most important feature of this subdivision is that it permits
a trivially easy computation of the ''pivot'' step of dropping one vertex
to pass to the adjacent simplex through the remaining face. If the

vertices are ordered as above:
New vertex = Vertex before + Vertex after - Old vertex.

This is shown in the listing of the three simplices above by arrows
pointing from the old vertex (out) to the new vertex (in).

It is easy to give a count of the number of pieces in a
subdivision of degree (Dl’ ooy Dp). The product subdivision gives

n,-1 mn,-1 np-l (n1+...+n -p)!
D, D, ...Dp pieces and each is cut into @Dl -1

p.i-.eces. For example, a (10,10, 10) subdivision of SZ x S2 x 'SZ has
6,000 pieces. Fortunately, the algorithm examines only a small

fraction of them.,

5. The Algorithm

The algorithm works on a subdivision of degree (Dl’ coey DP, 1)
of Snlx. . .x-.Snpx SZ' We use integer labelling as before on vertices
of the form (Zl, ceey Zp, (0,1)). To define an integer labelling for
vertices of the form (Z),.+,2Z, (1,0)), let (Z},... ,'Z‘p) be such that
(Zl-i-En sece Zp+En ) is the best available non-negative integer approxi-

1
mation to the equilibrium of degree (Dl’ coes Dp). We then define

L(Zlo LI ’Zp: (1,0)) = (51’ e :jp)
if jk is first maximum of zkj';kj' This induces an integer label as before
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and we are able to pick a starting simplex of dimension n1+. .o +np-p+1

to begin the algorithm, It is listed below (with the integer labels IL at left):

IL
1 (Z) +1sZ 00 es zlnl), (Zy #1525 0005 zan), cees (zp1+1’ Zop0et .'z‘pnp), (1,0))
2 ((zll’ le+1. e aeyp zlnl),(zz 1+1, zzz' oo 0y zznz). LI 'Y (zpl+1’;p2’ [ ) ’-pnp).(l, O))
n, ((au,zlz. eee ,zln1+l), (zzl+1, Zygreccs zznz), coey (zp1+1’;p2' eee ,-pnp), (1,0))
o+l ((zu,zlz....,zlnlu), (zZI,zzzfl,...,zan),...,(_zpl-+1,';pz,....—pnp),(l,O))
+.. .+np-p+1 ((zll,zlz, o ,zln1+1), (221, Zypreets zzn2+1), cess (zpl' zpz, cee ,—ipnp+1), (1,0))
, % z e e z Z z e e z. zZ z z
! ((xll’z].Z’ 'z1111+1)’(221'222’ vzzn2+1)o---.(Zpl,zpz,...,zpnp+1),(0,1))

As is customary in pivotal algorithms, when the new label (marked "?")
is computed, the vertex with a repeated label is dropped. A new vertex
enters by the rules given before and the algorithm continues. The success

of the algorithm depends on the following theorem.

Theorem 4., The algorithm can only pass through the boundaries of

Snlx. eeX Snpx Sz through the face Snlx. eeX Snpx(o, 1). This is signalled
by the appearance of a vertex (Zl’ ey ZP, (-1,2)). When this occurs, the

remaining vertices in the face carry a complete set of integer labels,
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{1, ey N+1} . By Theorem 2, for fine enough subdivisions, these vertices
approximate a user-optimized equilibrium.

Of course, this theorem gives a constructive proof of Theorem 3. The
algorithm is intended to be used as the Sandwich method, restarting from
each approximation by increasing the degrees by an integer factor. Experience
with the Sandwich Method indicates that the algorithm should be practical
for problems for which n,+.. .+np-p can be as large as 100. For example,

100 OD pairs with two paths

EXAMPLE: (Potts-Oliver, pp. 96-100)
k=1,2,3,4 (that is, four OD pairs).
oy = 2,2,1,2 (that is, two paths per OD pair, except for OD pair 3).
£=1,2,3,4,5 (thatis, five links). '

The link-path incidence matrices are:

AD A LB @
1 [ 1 o ¢ 1 0 ¢ 0o 1 0|
2 0 o § 1 0 § 0 § 0 o0
3 0o 1 ! 0o 1 i o ! 0 o
4 0 o § 0. o g 1 g 1 0
5 Lo 1 i 0o 0 ! o ! o 1

d‘k= 3,6,2,5

Proportionate flows are given by:
>
((xll’xlz)’ (x219x22)) 1’ (x41’x42)) E— o
R T Xt = L xyy hx, =1
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Induced flow on links is given by:

fl = 3x11 + 6x21 + 5x41
f, = 6%

f3 = 3x), + bx,,

£4 =2 + 51:41

£, = 3x), + 5% .

(8]
[

User costs on links are:

1 <

A

4,99
cplEp) =

100 + 10%(£p -4.99) £ 2 4.99.
The following is an example of a path cost computation:
clz(Xl, cee ,X4) = c3(f3) + c5(f5 )
= c3(3x12+6x22) = c5(3x12+5x42) .

The following is an example of a label calculatic=:

To calculate
L((1,0),(6.2,0.8),1,(0.1,0.9))

we first calculate flows:
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fl =3+1,2+0.5 = 4.7
£, = 1.2

f3 = 0+4.8 = 4.8

f4 =2+0.5 = 2.5

fs =0+4.5 =4.5.

We then calculate link costs:

¢y = 10/3
cy = 5/19
cy = 5

cy = 2/5
cg = 2

These induce the path costs:

€1 = 3.33%
€1y = 7.00
ey = 3.59
c22 = 5*

C3q = 0. 40%
€41 = 3.73%
€42 = 2
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The most expensive path with a positive flow is starred for each

OD pair. Hence

L(XI,X x3’x4) = (1,2,1,1)

2’
The induced integer label is

I.L(XI,X X3,X4) =1,

2’
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PAPER 4
COMPUTATIONAL SAVINGS FROM AGGREGATION

1. Introduction

The object of this paper is to estimate the computational savings
that can be achieved by applying an aggregation method to a network model.
Since these savings are measured in terms of the number of arithmetical
and logical operations to be performed, the question only makes sense when
posed for the usual three way combination: network model, aggregation
method, and mathematical technique ér algorithm, The aggregation
method reduces the number of network elements (links, nodes, OD pairs,
etc, ) and this in turn reduces the number of multiplications, additions,
and compaﬁsons to be performed. The remaining sections of this paper
are organized according to the classification of network models given in
the summary guide, namely, Hitchcock-Koopmans Transportation Problem,
Max Flow, Shortest Path, and Equilibrium Models.

Before entering on the specific details of the estimates, several
general issues must be discussed, First, as will be seen below, most
of the specific results available on operation counts are upper bounds
rather than average performance. If these upper bounds are tight or if
they are of the right order of magnitude this does not matter. However,

a good example is provided by the Simplex Algorithm. The only valid
upper bounds on the number of pivot steps grow much more rapidly in the
parameters of the problem than does actual computation experience.
Therefore, if we are interested in estimating the expected savings from

aggregation we should use the latter, not the former.
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Secondly, the payment for computation is made for machine time,
not for operation counts, although there is obviously a connection between
the two., Therefore, ideally we should have estimates of the machine time
for a particular programmed version of an algorithm applied to a network
model of various sizes, This information is seldom available, However,

we shall be able to give examples in the later sections of this paper.

2. Hitchcock-Koopmans Transportation Problem

For this problem, there are m source nodes, n destination nodes,
and mn directed links joining. There are two primary algorithms which
have been used to find optimal solutions, the special version of the Simplex
Method and labelling algorithms (such as that of Ford and Fulkerson).

For the Simplex Method, no upper bound for the number of opera-
tions seems to be available. However, there is a considerab.le body of
experience to draw upon. Since there are m +n - 1 linearly independent
equation constraints, we may expect a (small) muitiple of m+n - 1basis
changes. Each basis change requires the determination of m + n - 1 dual
variables, possibly mn-m -n+1l=(m-1) (n - 1) comparisons, and
the alteration of the basis, which may alter 2 max (m,n) elements. If
we assume that m is much smaller than n, an average performance of
0 (mnz) is not a bad estimate of the behavior of the algorithm.,

The major candidate for aggregation for this problem is
(desination) node abstraction (as illustrated in Paper 1), If the problem
is compressed from m by n to m by p, the operation count should be

reduced by a factor of about pz /nz. Thus, in the last example of Paper 1,
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the operation count should be about (1 + 9 + 49)/10% = 0.0059 of the
number of operations to solve the original problem since three problems
of size 3 by 1, 3 by 3, and 3 by 7, were solved. However, this
estimate is overly: optimistic since it omits the effect of lifting. On the
other hand, the estimate of O(nz), holding m constant, is backed by
other evidence for the labelling algorithms.

First, there is the classic result of Munkres (for the assignment
problem where m = n and 2ll a, = bj = 1) that bounds the number of

operations by

1103 + 1202 + 31n
6

According to Tomizawa, n3/ 3.additions and 2n3/ 3 comparisons are
sufficient to solve assignment problems by an adaptation of the Dijkstra “
shortest route algorithm,

This concurs with the estimate of Dwyer who, using a technique
of reduced matrices on the Transportation Problem, finds a bound for
the number of steps to be m + 2n - 1. At each step there are mn compari-
sons and hence we obtain an upper bound of mn (m + 2n - 1) For m much
smaller than n, the estimated performance of O(nz) results as m is held
constant, Alternatively for (destination) node abstraction, we expect an

improvement of le nz.

3. Maximum Flow Problem

Let us assume that the connected network N has n nodes, and

nL directed links.,
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Assume for convenience's sake that ng is maximal, that is
n, = n(n - 1) although some of the link capacities may be zero. Each
link has a nonnegative capacity. The pi'oblem consists in finding the
maximum flow from one node to another. |

The solution algorithm consists of two steps: 1) a labelling
process, and 2) a flow change. Our aim is to determine a bound on the
(finite) number of flow augmenting paths.

For each flow F, let N(F') denote the network N with a flow F,
but with the following capacity changes: if link (i, j) is saturated by F
with the quantity xij’ then link (i, j) is give;z capacity zero, but conversely
line (j,1) acquires capacity xij’

The labelling method generates a sequence of network
N(Fi)' fori=1, ..., k, Fk being the maximal flow. Flow Fi-l-l i?
obtained from Fi by superimposing a flow augmenting path,

Now it can be shown that a link can be saturated in one network but

not in the next one for at most nél times., Since each flow augmenting

path saturates at least one link in N(F), and there are n(n-1) links

altogether, the total number of low augmenting paths is bounded above

by

n(n - 1) (_11_2:__1._)+ 1 n3,

This bound can be somewhat improved but not reduced to O(nz).

Since the most natural aggregation method for this problem is
not a reduction of the number nodes by extraction or abstraction, but
rather a reduction of the number of links by extraction (say, by deleting

all links below a given capacity), the above argument (which is adapted
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from Hu, Edmonds, and Karp) must be modified, This is easily done
and yields an upper bound of 0 (nL n). Thus, cutting the number of

links by half merely reduces the amount of labor by half.

4, Shortest Path Problem

For this problem we shall assume that the network has n

nodes and n. links. Associate to each link (i, j) a distance dij’
which is not necessarily equal to dji'

The problem consists of finding the shortest:

(a) Single path from one node to one other node.

(b) | Paths from one node to all nodes.

(¢) Paths between all nodes,

Two main types of aléorithms exist:

(A) Tree building algorithms for problems (a) and (b),
characterized by the fact that every node has a
predecessor (1-5 below).

(B) Matrix algorithm for problem type (c), where network,
shortest path distances, the shortest paths themselves,
are in matrix form (6-9 below).

The following list gives an account of the best known a.lgorith:hs.

1. Dijkstra (refined by Whitney and Hillier). This is generally

recognized as the most efficient algorithm, for di' > 0.

A shortest distance tree is built up from origin to all other nodes

by a system of tentative labels which, through a series of iterative steps

for each node, eventually assigns a permanent label to each node.
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It requires:
n(n - 1)
———— additions and comparisons to compute tentative node labels

2

n(n - 1)

comparisons to find minimal label at each step
2

(n - 1)2 comparisons to consult the indices,
or, altogether, less than a total of

n2

—_— additions and an comparisons.
2

(Note this is a "once through' algorithm and solves (a) and (b).)

2. Minty (improved by Whitney and Hillier). Again dij 2 0.
Here the original algorithm required n3/ 6 additions and comparisons.
After the improvement, the bound is reduced to n?/2.

This appears as a misleading amelioration of the Dijkstra method,
since it requires:

n” log,n additional comparisons for data ordering, and

3nz additional comparisons for data modification required
for certain link deletions.
Thus it is only efficient for sparse networks with far fewer than
n? links. |
(Note this is a '"once through'' algorithm and solves (a) and (b).)
3. Ford, Moore, Bellman, d'Esopo. Here dij are arbitrary.
A shortest distance tree is built from origin to all other nodes by a

system of labelling, or indexing, or flagging, or shift constructing, where

a node becomes temporarily active. Each node is active at least once,
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but can be many times. For each active node, there are as many
operations a links connected to it. The repeated updating of lables

3 additions and comparisons. It is most efficient

requires at most n
if there are fewer than 4 arcs per node.
(Note this is an '"updating' algorithm and solves (a) and (b) with dij
arbitrary.)
4. Yen. The Yen improvement of the above reduces the
operations to n3/4.
(This is an "updating'' algorithm and sollves (a) and (b) with dij arbitrary.)
5. Dantzig, Blattner, and Rao. This algorithm seems difficult
to program and requires at most n3/ 3 additions and 2n/3 comparisons.
(This is an "updating'' algorithm and solves (a) and (b) with dij arbitrary.)
6.. Floyd., The original matrix is changed in n steps into final
matrix of shortest distances., For r = 1,. eeesy N, each of these matrices
Mr must be inspected for all i, except i = r, connected with all j,
except j = 1 or r. Thus the total number of additions and comparisons is
n{n - 1)(n - 2).
(Note that this solves (c¢) and, with modification, works for dij arbitrary.)
7. Farbey, Land, Murchland (Cascade algorithm), This
algorithm requires n(n - 2) additions and comparisons for the forward
process and n(n - 1)(n - 2) additions and comparisons for the backward
process. Thus, the total is nz (n - 2) operations,
(Note that this solves (c).)
8. Dantzig., This algorithm generates successive matrices

Mr of increasing size and requires n(n - 1)(n - 2) calculations.

(Note that this solves (c). )
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9. Floyd, Hu, For a sparsely connected network with np
about 4n, say, the following partition improves the Floyd algorithm.
Let Nz AUBUZ, where A and B are not connected, IAl =n,,

lB' =n_, and 'Z' =n,, The total number of additions and comparisons is

BD

3 3
+ (nz+nB) + ZnAanz .

2 (ny +15)
(Note that this solves (c).)

10. Dantzig. This method also generates n successive
r x r matrices Mr of increasing size for r= 1, ..., n. These are

shortest distance matrices using nodes {1, eses r} as intermediate nodes.,

For each r, three types of evaluation are performed requiring

(r - 1)2, (r - 1)2, and (r - 1) (r - 2) operations,

respectively. Thus we obtain the bound

Zn {z(r -1t (r- (- z)} =n(n - 1)2.
r=1

(Note that this solves (c).)

While we have been unable to discover any direct aggregation
method to apply to this problem, the most important conclusion to draw
is the fact that when it appears as part of an equilibrium algorithm we
must solve (c). Thus the overwhelming evidence is that an operation count
of 0 (n3) is appropriate here, Estimates of link aggregation would require
refinements of the estimates given above,

Another important consideration which has determined the choice
of algorithm in many applications is the storage requirements, Briefly,

tree algorithms require less than 4n + 2n_ storage positions, while

L
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matrix algorithms require more than an. In a transportation network

where n_ is about 4n, it is clear that algorithms (A) are clearly

L
preferable.,
5. Equilibrium Models

We shall restrict our discussion to one aspect of the algorithm
proposed in Paper 3. This algorithm has the characteristics of pivoting
algorithms where it has been shown that the computation t'ime depends on
two factors: (1) the number of labellings and (2) the computation
involved in a labelling, Without entering into the detail of the mass of
computational experience that is available, it may be summarized as
follows, at least for equilibrium models., Both factors appear to be
proportional to (d - 1)2, where d is the dimension of the problem, and
with possible savings in the functional evaluations., Thus if we extract
Dys aees np paths for the p OD pairs, we expect the computation time to

grow like

(n1+coo +np'p‘ 1)40

Thus, a reduction from 3 paths per OD pair to 2 paths per OD pair

should cut the computation time by a factor of 16,
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PAPER 5

AGGREGATION TEST NETWORKS

1. Introduction

Numerical experimentation with aggregation rules has been hampered
by the lack of programs and networks that are suited for such a purpose.
This paper reports on a set of programs and models that has been assembled
to provide support for research on aggregation. The equilibrium model,
TRAFFIC, developed at the University of Montreal provides the foundation
for the program battery. This has been converted to run on IBM computers
and numerous small improvements have be'én made. Several cost functions
are currently available. These have been supplemented with a simple gravity
model for generating demands based -on populations. |

A forty node problem has been develyped to serve as a test network.
The model is abstracted from the Massachusetts highway systems. The
network design is oriented towards providing a basis on which aggregation
experiments can be conducted rather than towards obtaining a factual
representation of a particular situation. We have thus taken some liberties
in the treatment of nodes, arcs, and their characteristics.

An aggregated network of twenty nodes has been abstracted from the
larger network using a specific set of rules for selecting nodes and c;)m-
bining arcs. The following sections describe in detail the programs, the
model, and the aggregation.

2. The Network Programs

The TRAFFIC program is a general equilibrium model. It assigns
traffic flow to links in a transportation network such that no individual can

unilaterally improve his routing. The solution depends on the origin to

76



destination demands between centroids and on links specific cost functions
provided by the user.
As described in the program documentation, 1
.+ .the program reads in the characteristics of the links of
the network and the demands between origin/destination
pairs of nodes (centroids). The algorithm used to per-
form the a 2ssignment is an iterative method developed by
S. Nguyen® (algorithm Al in reference). The user supplies
parameters which determine the number of iterations which
will be performed before the program stops and a report on
the resulting solution is put out, The program also allows
the user to restart computation from an existing solution for

the same network, and carry out further iterations as
desired.

The inputs to the system include program parameters, network
descriptions, and the demand matrix. The program parameters include
two report title cards, a comment card,; a parameter card containing
tolerances, maximum cycles, print control, restart, and number of delay
functions, delay (o:.: cost) function coefficient cards, and a network sizé card
containing the numbers of nodes, links, and centroids (nodes generating
and/or absorbing flow). The network description is link oriented. Each
card in this group provides the start and end nodes of a link, the length,
the number of lanes, the number of the applicable delay function plus two

link dependent coefficients as required, and observed characteristics

1Nguyen, Sang, and Linda James. 1975 (March). TRAFFIC: AnEqullx.b-
rium Traffic Assignment Program, Publication #17. Centre de Recherche
sur les Tra.nsports Univerite' de Montréal: Montreal, Canada. Much of
the discussion in this section is based on this report.

2Ngu.yen, Sang. 1973 (April). A Mathematical Programming Approach to
Equilibrium Methods of Traffic Assignment with Fixed Demands,  Pub-
lication #138. Départment d'Informatique, Universite' de Montréal:
Montreal, Canada.
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including speed, time, and volume. The demand matrix consists of a set
of cards for each origin containing the nonzero demands to other centroids
with the centroid numbers. A restart capability using a file of intermediate

results is available but has not been used in our experiments to date,

The outputs from the system include a log of each cycle, a terminal
solution report and a file containing the final solution in a form suitable
for restarting. Each log line reports the current value of the objective
function and the rate of change. The terminal solution report contains the
reason for terminations, execution times (currently inoperative), the total
vehicle hours, miles, and average speed, and a line for each link which
reports the input parameters plus the observed time and volume. The only
difference in the output reports is the addition of the delay function coeffi-
cients on the link section. The reader is referred to Nguyen and James
for a further discussion of the program. The outputs will be illustrated
below in presenting the network model.

Cost functions are provided to TRAFFIC by the user. Four such
functions have been programmed. These include the following cost (time)

functions per traveler on a link and the associated objective functions.

Exponential:

User cost

B. Flow

= (e ) . Distance
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where o and B8 are two parameters. o is the
reciprocal of the speed under traffic free conditions.
Several pairs of @ and B8 can be provided to the
program (on the delay function coefficient cards); a
selection of one pair is provided for each link on the
network description (through the delay function number
parameter). The flow and distance depend on the
individual link.

Objective function cost

2 (e 8. Flow_l) . Distance

In the objective function this is summed over all links.

Linear:
User cost
= (0 + B. Flow) . Distance
where o« and A are two parameters. « is the

reciprocal of the speed under traffic free conditions.

Objective function cost

= (@ . Flow + -;-B . Flow z) . Distance

Fourth Power Rule:
User cost

- T0(1+.15(-F](':£L)4)
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where T  is the time to transit the link when there

is no traffic and C is the effective capacity as de-

fined by transportation planners who use this function.
Objective function cost

= T, . Flow. (1 + .03 (:

Inverse (Modified from Potts and Oliver)

User cost
-5-:-%%1; if Flow is less than 4.99
5 i 39 + N(Flow -4.99) if Flow is greater than 4.99

The orig'inal function was capacitated. It was mod-

ified here to provide linear growth at a very high

rate (N) and effectively capa.,citate the problem.

In the final solution, no flow should exceed 4. 99.
Objective function cost

In 5 - In (5-Flow) if Flow < 4.99

1n5 -1n (.01) + (100 +-%N (Flow - 4. 99)) (Flow - 4.99)
if Flow 2 4.99

A gravity demand model has been developed to generate demand data

for the TRAFFIC model. It uses the basic formula

- SCALE * POPULATION (I) « POPULATION(J)
DEMAND (I to J) DISTANCE (I to J')Z
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The scale factor ('SCALE') is provided for the user to fit the resulting .
demands to any observed demands.

The program accepts as input the number of centroids, a cutoff
below which demand is treated as zero, the scale factor, the populations
and the distance matrix (in upper triangular form). If demands are notto
be included for a pair of nodes, this can be indicated by setting the
distance to zero.

An additional capability is provided for automatic centroid aggregation.
The user provides as input the original nodes to be aggregated into each new
node. The demand between two aggregated nodes is the sum of all the
demands bétween the two sets of original nodes which are combined into
the aggregated nodes. Intra-set demands are disregarded.

The printed output of the gravity model includes a listing of the input

and the calculated demands (after any aggregation). A file is created for

' input to the traffic program containing the demands. The job control

language provides for this file to be automatically concatenated to the

other TRAFFIC input data.

3. The Models

A small experimentation model has been developed for testing alter-
native aggregation rules and parameters. This model is abstracted from the
Massachusetts highway system and is shown in Figure 1. It includes 28
intra-state nodes and 13 extra-state nodes which feed demands into the sys-
tem as identified in Figure 2. All nodes are centroids and the demands have
been developed from 1970 population data., Forty-seven bidirectional links

within the state are used representing major turnpike, four lane and two
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1. Boston 22. Williamstown

2. Salem 23. Greenfield
3. Gloucester 24. New Salem
4. Newburyport 25. Falmouth
5. Lawrence 26. Hyannis-
6. Lowell 27. Orleans
7. Fitchburg 28. Provincetown
8. Worcester 29. Portland (Me)
9. Framingham 30. Concord (NH)
10. Brockton 31. Manchester (NH)
11. Plymouth 32. Keene (NH)
12. Wareham - . 33. . Brattleboro (VT)
13. New Bedford 34, Burlington (VT)
14. Fall River 35. Troy (NY)
15. Taunton 36. Albany (NY)
16. Sturbridge 37. New York (NY)
17. Springfield 38. Hartford (CN)
18. Northampton 39, Providence (RI) via Bostc.)n
19. Westfield 40. New York (NY) via Gt. Barrington
20. Gt. Barrington 41. Providence (RI) via Fall River

21. Pittsfield

FIGURE 2. TEST NETWORK NODE IDENTIFICATIONS
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lane roads. Some liberties were taken to develop a useful test network in
this process. A linear cost (time) model is used with the parameters set
so that average speeds under uncongested conditions are 60 mph, 50 mph,
and 40 mph. The increase in time with congestion is scaled so that most
roads show a moderate decrease in average speed. Distances are taken
from a state highway map. The solution showing the network loading by

links is displayed in Figure 3 .

4, Aggregation

A nodel aggregation rule has been developed and applied to the
Massachusetts test model. The following algorithm is used for node (and

centroid) aggregation:

Step 1. Define neighborhood of node i = n, = {j||[|(i,j)f < 24}
Let S = {i Ilnil >2}.
Step 2. Order S according to population size.
Step 3. Aggregate {{i}Uni I ie S} in.above order with stipullati.ons:
a) KN By B <ip<aee include K in firstn, with |n| =2,
if one exists. Otherwise, let KEni .
b) If because of a), n,~=n; with Inil <2, exclude i from S.
Step 4. Aggregate remaining single end nodes K to adjacent set
{i}Uni if some link joining K to i or n; has length < 26.

Step 5. Consider remaining single nodes as aggregated nodes.

These aggregation rules are heuristic; the parameters have been set
so as to produce a network of reasonable size. However, they illustrate an

informed attempt to formulate a precise rule.
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old
1,2,3,10, 11
8,9,16
17,18, 19
12,13, 14
4,5,6
20, 21,22
7,23, 24
25, 26,27, 28
15

5
g

Results:

O 00 = O O b W N =

Link aggregation is accomplished by combining into one aggregated
link all links from nodes in one aggregated node to nodes in another agg-
regated node. The distance is averaged based on guestimated usage. The
constant part of the cost function is similarly averaged. The slope part is
averaged using the usage squared.

The network which results from the application of these rules is
shown in Figure 4. An illustration from a part of the network is provided
in Figure 5 which shows how groups of nodes are combined into single
nodes and how clusters of links are combined into single links.

The solution showing the network loading by links of the aggregated
network is displayed in Figure 6 . The difference in results in the South-
Eastern area (shown above in Figure 5 ) has been analyzed to determine
some of the effects of the aggregation. The major difference is that 267
units of flow were transferred from the path 10-15-14 to the paths 10-12
and 10-13 (where the numbers fefer to disaggregated nodes). There is

also an increase in apparent times of zero to ten minutes on various paths.
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Note that a bias has been introduced through the parameters of the

aggregation rule. A table of differences in results is shown in Figure T ,
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PAPER 6

AGGREGATION BY THE EXTRACTION OF A TRANSVERSAL LINK

1. Introduction

The aim of this paper is to study the effect on the network descriptive
assignment problem of extracting (o.r equivalently inserting) a transversal
link between two chains joining one fixed OD pair.

The main result is the precise evaluation of the cost change per
individual traveler brought about by the simplest non-trivial aggregation
procedure: the extraction of a single link. This cost can be given expli-
citly in terms of the coefficients of the (linear) link costs and the demand.
(If this result is interpreted in terms of link insertion instead of extraction,
this result.chara.cterizes completely the so-called '"Braess Paradox",

° where the addition of a link increases the travel cost of every individual.)

The link costs (disutilit.y functions) are initially first degree poly-
nomials (with non-negative coefficients) of the flows. In the last sections,
these costs will be generalized to polynomials of arbitrary degree.

(Nowhere will integer solution requirements be considered).

2. Problem P.. Linear costs without transversal link.
Consider the network N below, whose directed links are numbered

from 1 to 4.
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2.1)

We assume a flow of K units from O to D, which can be distributed along the

two paths:

o

denoted by L

denoted by R.

To each link, we associate a cost function/individual

f. A. B.
J(x) = Jx +

J
Aj' Bj € IR+, unless zero G=1,...,4),
>
A.1+A.2 0,A3+A4 > 0

for travel along link j with flow of x units. Let PI denote the assignment

problem characterized by { N, K, fj } .

Descriptive solution of PI' Let x, K-x, be optimal descriptive

flows on L, R respectively. Then our requirement that both L. and R be utilized,
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namely, 0 < x, < K, also takes the form

0

- B -B

where

2.3) B =B,+B,-B,-B,.

Let I=A +A

1 2+.A3-i-A >0.

4

It is easy to show that if (2.2) holds,

K(A,+A,)-B
_ 3774
2.4) X = 3
and the minimal cost/individual on L. or R is
' ) (A1+Az)(A3+A4)K + (A1+A2)(B3+B4) + (A3+A4)(BI+BZ)
'2.5) C. =
I )3
Normative solution of Pl' Here in order to utilize L. and R, we must
have an OD flow K with
(2. 6) in <K,
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2.8)

2.9)

in which case, the optimal normative flow along L is

x, ="0+i%' ’

and the normative costs/individual on L and R are given by

(A)HA)B  nd c, - (Ag+A,)8

C, + 53

. I
respectively; and the normative cost for the total OD flow of K units is

BZ
KCI - 4—2 .

Theorem 2.1. Optimal descriptive and normative solutions to PI
are given by (2.4), (2:5) and (2.7), (2.8), respectively. The difference

in total OD flow costs of both solutions is

1 2 .
35 (By+By-B4-B))

3. Problem P Linear costs with a transversal link. Denote b3'r PII

s
the problem characterized by {M, fj ’ K} where the network M with a

transversal fifth link is as follows:




Let the cost function
3.1) fs(x) =mx +n (m,n € R* if not zero).

Denote by Z the third, now available, OD path {1,5,4}. Let the descriptive
optimal flows of PII along paths L, R, and Z be denoted by Xy X, and x4
respectively, x1+x2+xs = K.

To simplify the notation, let

¢y = (A;+A,)(B,-B,-n) ,
3.2)
'l'z . (A2+A4)(B3'Bl'n) »

and denote the following determinants as follows:

(3.3) A= A1A4 - A2A3 .
A2+A4+ m m
(3.4) A= = (Ay+A,)(Ay+A)+mE > 0 .
1°°3 4
m A1+A3+m .
Then

1 .
-3 [lﬁl +Bm - K[A4(A1+A3) + m(A3+A4)]]

—
4]
[
]

(3.5) { x, =- % ['ﬁz -Bm - K[A; (a4 ) + m(A1+Az)]]




if the following conditions in K, which ensure positive x; hold:

. e { /3 * mp Y, - mf } K
3.6) Yy =Max (A1+A3)A4+(A3+A4)m ’ (A2+A4)A1+(A1+Az)m < ’
3.7) 0<'-AK+¢1 +¢Z .

The expression on the right of (3. 7) is fundamental in what follows and

will be denoted by
3'8) ’ 0 E-AK+¢’1 +¢z °
It is easily verified by (2.1), (2.4) that

3.9) % = fz(xo)-f4(K-x0)-f5(0) = f3(K-xO)-f1(xo)-f5(0) .

Theorem 3.1. Given the descriptive assignment problems PI’

Py

(3.6). Then the Z path of Py; will be utilized with optimal flow xlg

with an OD flow K greater than the lower bound imposed by (2.2),

only if 6 > 0.

4. Linear link aggregation cost and Braess paradox. Assuming
positive descriptive optimal flows along all 3 paths of PII’ it turns out

that the elimination of link 5 and path Z induces the following defections

from Z to L and R:
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_ e B W D i
8y =xp-x, = S A3 3
t.1) A_+A A_+A
_ _T2T g ™y
&, = K-x-x, S D

We next compute the difference in descriptively optimal travel costs for
an individual on path L, Ror Z accoi'ding to the presence or absence of
link 5. It turns out that

- ) = =4
4.2) CH(L) - CI(L) -Cn(R) - CI(R) = CH(Z) - CI(L) S e .

Theorem 4.1. On each of the three paths of PII’ let the descriptive
optimal cost be denoted by CII' Then the aggregation cost of extracting ]
link 5 is

4.3) @®=C; - Cy = - ‘%% = - %[fz(xo)-f4(K-xo)-f5(0)].

Corollary 1. If A =0, Bk 0,

Corollary 2. If A # 0,

x ) P 0
4.4) D . _ 9 =4
A 3 A1+A3 A2+A4 AS

Theorem 4.2. Necessary and sufficient conditions for the Braess

conditions to hold, that is for ®<0 (with positive flows on all available paths)

are given by
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(4.5)

(5.1)

(5.2)

(i) A>0 ,
(ii) OD Flow K bounded by Max (p,v) < K< %(n/:l‘l"/lz) ’

where u,v are given by (2.2), (3.6) respectively, and the l,bi by (3.2).
Corollary. PII has a built-in "normative' valve, in the sense that
if, descriptively, CII - CI > 0, the total cost link 5 imposes on ''society"

is bounded above: .

~

2
_xag %)

K(Cn- CI) = %3 ’

for all feasible Braess flows K.,

5. Polﬂ. omial Costs. We generalize problems P and P, by
associating link costs fi(x), with the stipulation that these be polynomials
with coefficients in R+ (if nonzero), hence convex along with their derivatives
and integrals over 1R+.

Again we express the requirement that the descriptive optional flow

to PI be interior to the constraint set by:

£, (K) + £,(K) > £,(0) +£,(0)

f3(K) + £4(K) > f1(0) + fz(O) .

For such an optimal flow X, on L, we must also have

fl(xO) + fz(xo) = £3(K-x0) + f4(K-xo)
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Again let Xs Xy, X, denote the optimal descriptive flows for PII'

Sufficient conditions for the interiority of X; X, are

f4(K) + fS(K) > fz(O)

)

(5. 3)
fl(K) + fS(K) > f3(0)
Corresponding to our former positive flow on link 5, 6> 0, we must have
(5.4) fz(xo) - £4(K-xo) = f3(K-xo) - fl(xo) > fs(O) .
While the equilibrium conditions are given by
(5.5) fz(xl) - f4(K-x1) = f3(x2) - fl(K-xz) = fs(K-xl-xz) R
which can be stated as:
Our present aim is to estimate the aggregation cost @: CI - CII'
By using the convexity properties of the fi’ we can prove:
Lemma 5.1. If K is bounded by (5.1), (5.3), (5.4),
E5.2-E 52 LAWAS. -AS
(5.7) 471 372 @"'41 372¢ 0,

=52 = a2
B0 A8 @ A28 45,40
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where

r H
f.5 (0) =m
£ (x,) = A, i=1,2),
5.8)< i %o i 1 )
£ (K-xg) = A, (1=3,4),
L1y (xg*8,) = Bps £, (xg) =Ky, £; (Koxg) =Ky, £, (K-xy+8)) =&, £ (5,+5,) =&, .

@*= fz(xo) - f4(K-xo) - f5(0) = f3(K-x0) - fl(xo) - f5(0) >0,

by (5. 4).
Lemma 5.2. If A >0 is given by (3.4), with the Ai’ m as in (5. 8),

2 2 2 2
SN0 - Y128, < (A FAL)G* -A8; < 9,8 + 9,8,

2 2 2 2
Y5101 = Y8y < = (ApFALN0* +A8, < @y 8,7 +a558," ,

where the aij’ yij are polynomials in Ai and m.

Theorem 5.1. The expression -% 6* is an estimate of @ ,. in the
sense that the difference between @ and it is bounded below and above by

2nd degree polynomials in the 81'.’ as in lemma 5. 2.
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6. Example of quadratic Braess model.

On network M, let

Flow K= 6

£, =, =x" +10x

£, =55 % +x+66

fs = xz +x+10
Solution to PI: Xy = 3, CI =117

Solution to Pn: x,

Xp =X, = 2, CI[ = 128.
Hence

®=CI - CI.I =-11,
Computing the estimate of Theorem 5.1, gives the value

the error being thus = 5% @ .

7. Generalization to two OD chains. All above results can be

trivially generalized to a series aggregation model, with one transversal

link between two chains sharing the same origin and destination.
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Graphs illustrating theorems 4.2, 4.3

y:@:CI-Cn=-

where

flow K & Max (u,y) by (2.2), (3.6)

>

slope r AS 2

Assume # 0, otherwise ym 0,

éi-:rk+s ’

Case a) Braess situation; y<0=>A>0=> 'ﬁl+lﬁ2 >0 => s<0.

£.0) ((¢1+¢2)A'1.0)

(0, s) 2
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Caseb!@ >0, 8< 0. Thenrk+s2202> Ké-—:.

Y
4
l’ > K
2 (50)
l"'
(0,8) [ - ' t >max (g, ¥,~2)
Case c¢) y>0, 8>0.

y
L )

Ill'

I' ¢

Pl §

l‘ !

4 [}

e !

’ ]

| ]

]

;

-> K
(t,0) t = max (4,Y).
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PAPER 7

BOUNDS AND ESTIMATES FOR

AVERAGE SPEED PER OD PATH

1, Introduction

In a large transportation network, with ny origins, .n,
destinations, and an average of p paths joining each OD pair, the
computation of the average speed ¥ per OD path requires summing

oD OD oD . i :
pn;n, products f5 Vo » Where fg -is the quantity shipped
from O to D along path a with average speed ng .

By aggregating flows out of every origin and into every

destination, this paper gives upper and lower bounds, M and m,

M;m of ¥ requiring the summation of only

and an estimate
2(n, +.nz) products.

If the origins and destinations are disjoint, the path character-
jstics are completely determined and expressed in terms of link
characteristics (usually the only information available). If some
nodes are both origins and destinations, then additional information
regarding the flow into or out of these nodes is required to determine

path flows.
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2. Definition of Problem

Given a network N with nodes {i}, directed links {(i, j)} and link

characteristics for (i, j) € N as follows:

flow fij in units of homogeneous product
speed vij in miles/hr (1. 1)

distance dij in miles.

The last two define
link time tij = ’dij/vij in hours. - (1.2)

The product is assumed to be shipped from various o‘rigins to various
destinations along various paths @ of N. We are interested in expressing
the average speed v per OD path @ in terms of link characteristics. When
an explicit formula is not available owing to the complexity of the network,
we will define upper and lower bounds, and hence an estimate of v, by
aggregating the flows out of every origin and into ev:ery destination.
If
o
D

igins € N
{ong 8 } (1. 3)

{destinations € N},
and k €O, peD, let a=[k,p] denote a path fromk top in N. Let

Q = {a]all kO, all pe D}. (1. 4)
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Let

v:p = average velocity from k to p along .

fbp = OD flow from k to p along @-

Then
7.3 4 v::/z g
ve.Q -7:3°]
3. General situation
Ifke O, let
a(k) = {paths ¢ ¢ Q originating in k}.
Ifpe D, let

B(p) = {paths o € Q terminating in p}.

Then Z can be expressed either as

z = [Z P vkp] :

keO “wealk) & ¢

or as

2 - fkpvkp].
1%3 %mp)“ “

It ;ie D, letthe total flow into p be denoted by

RP =) £ .

aeB(P) o

If ke O, letthe total flow out of k be denoted by

sk = &
Z
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Then the total flow through N,

F=2 RP=2 s*. (2.7)

peD keO

We relate Sk and RP to link characteristics as follows:

If j is an arbitrary node of N, let

A =fie njG. e N}

(2. 8)
B() ={i ¢ NG, j) e N}
Then the flows entering and leaving j are respectively
E, = £, . (2. 9)
I B Y
and
F. = £.. . : (2. 10)
I iea()
Then
f. = E, - F, jeN) , 2.11
3 3 j (GeN) ( )

denotes the demand (if positive) or supply (if negative) at j and is expressed

in terms of link characteristics. Note that we also have:

£ = R - ¢ (jeOND) , (2.12)
fj -sleo (je0ND),

g = RIs> 0 (jeOND), (2.13)
fj =0 (jeOND) .
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4, Bounds for v

In order to express the path velocities in terms of link characteristics

for each OD path o, we aggregate in series times and distances. Thus if

a =kik, rl) r, (rl.rz) Tpeos rm(rm,p)p, (3.1)
let

dep = dkl'l + drlrz + cen +t1'mp ‘o (3.2)

'Iakp = tkrl + t’l’z +ou. trmP . (3. 3)
Then

p _ o -

V.o ® D"’kp / Tkp (3.4)

The following maxima and minima are thus computed by (3.2), (3.3), (3.4)

in terms of the dij and tij:

V. = max V9, v = v keO)  (3.5)
k acalk) ¢ k Ea(k) o
U = max vP, u = P eD)  (3.6)

P qeBlp) ? P acflp)

S
1]

min{2, s*v 2 RPU_} (3.7)
o) k* D P

max%% Skvk. ZD.Rpup}

B
0
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Then 'l:;y (2.3), (2.4), we have
m<Z<M (3. 8)
for all sets of path flows compatible with (1.1) and one of the sets
{Rf}  or {s) (jeOND) 3.9
Theorem. The average speed ;per OD path is constrained by

M

< v T (3.10)

"B
A

where the two bounds canbe computed from the available link characteristics
(1.1) and additional information (3.9), by the formulas given by (3.2) to

(3. 7). (This involves the computation on(nl+nz) instead of xnlnz products,
where n; = |O'|, n, = lD', LA = average number of paths per OD pair.)

Proof. Formulas (3. 2) to (3. 7)‘ determine m and M in terms of (1.1)
and {SHqke0}, {RP|peD}. By (2.9) to (2.13), S* for keOND, RP for
peﬁﬂD are known in terms of (1.1), while (3.9) and (2. 12) determine the
remaining Sk and RP. Finally, by (2.7), F is determined by {Rp}.

Corollary. A 'reasonable' estimate for v is given by

M+ m, (3.11)
2F
5. Special cases
i) Uﬁique path o for each OD pair. .We can let
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We can then let p = 7(k) = ﬁ Then

f“ﬁ =" = F - E (keO) (4. 6)
and explicitly D, A _
- ek
=Z—(F-E>/Zw- ). (4. 7)
vrETE T /% k- Ex

(iv) ©OND = ¢ and mapping 0 : peD—keO if [k, pleQ, is single

valued. Moreover, path« 'is unique per OD pair,

Let k = g(p) = p. Then

FP=RP=E -F (peD) (4. 8)
and explicitly o P P . _
v = - (E -F) (E_-F_). (4. 9)
pze:D pp © P / ;§D P P

6. Illustrations

Specia.i. Case (ii)

10

i

15 1

o = {1,6} D = {2,3,4,5}
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kp
(4.1)
Z = Z tkp vk.p
keO
peD
while
k=D fP, RP=D P, “. 2)
-peD keO

Again let D,_, Tkp denote the (unique) aggregated distance and time

(3.2), (3.3)) between k and p; then

kp _
v ka/Tlcp ’ (4. 3)
Vk = max irkj » Vi ="'min vkj QteO),
jeD jeD
. . (4. 4)
U =max vP, u_ = minvP (peD) .
P je0 P je0

(ii) OND = ¢. Since it is impossible for a node to be both an
origin and destination, all s* and RP are expressed at once by (2.13) in

terms of link characteristics:

I
Ss" = - =F - (keO) ,
b "k~ Bk 4
P - = - o
RP= £ =E -F, (peD)

(iii) OND = ¢ and mapping 7: keO—=peD if [k,pleQ, is single

Moreover, path o is unique per OD pair.

valued.

116



lmkij dij fij Vij tij
12 100 10 25 4
23 200 8 40 5
34 150 10 50 3
14 300 9 30 10
63 400 8 50 8
65 60 7 60 1
54 140 6 70 2
node i E. F. Rr? st
i i
1 0 19 17
eO
6 0 15 15
2. 10 8 2
3 16
eD 10 6
4 25 0 25
5 7 6 1
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OD table For direct computation
Two possible sets of
ij pathe of, T, v fij
12 1,2) 100 4 25 2 2
13 [1,3] 300 9 33 6 3
14 1, 4) 300 10 30 2 5
through 2| 450 12 37 0 3
63 (6, 3) 400 8 50 8 5
64 | through 3| 550 11 50 1 1
through 5| 200 3 66 6 6
65 (6, 5) 60 1 60 9 9
{F2} = {25} > U, = u, = 25
{3} = {50,33} = U, =50, u, = 33
{4 = {50,66,37,30}=> U, = 66, u, =37
{%} = {60} = U, = ug = 60
{vlj; = {25, 33, 37,30} =2 V1 = 37, £ = 25
6.
{v>3} = {50,60,50,66} = v, = 66, v, = 50
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gapup 2(25) + 6(50) + 25(66) + 60 = 2060

2(25) + 6(33) + 25(37) + 60 1233

;Tpup

1619

2S5V, = 17(37) + 15(66)
c

; Skvk

17(25) + 15(50) 1175

F =85 +S =34 .

Thus:
1233 < Fv < 1619

37 < v < 47

Estimate of v = 42, by (3.11)

Actual value of v:

Two columns of possible f;j compatible with other data are given on

the right. Formula (1.7)then yields the values of 42. 6 and 42. 9 for v.

Special case (i)

N is line network:

®© ©®© & 6 6 o6
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ij & vis s £y
12 200 30 6.6 4
23 300 20 15 2
34 300 50 6 3
45 400 40 10 3
56 100 60 1.7 2
Let O = {1,2,3}, D={23,5,6}
sl=a, s2-=1, s®=2
R2=3, R¥ =1, RS =1, R®=2.
Here F = 7.
OD velocity table
v]'2 = 30
v13 = 23.1 v23 = 20
w13 = 315 v23 < 32.3 v3 = 43,7
w10 = 33,1 v26 = 33.7 w0 - 45.3
1 = 33.‘1 s Vp < 23.1 U2 = 30 u, =
, = 33.7, v, =20 U, =23.1 u, =
Vy = 45.3, v, = 43.7 Ug = 43.7 ug =
Uy = 54.3 ug =

Formula (3.10) gives

and estimate

29.7< v< 35.3

v = 32.5
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for all compatible fij g

a) Letf12 =3, 61, 2321, 5=, £¢=-
v = 33.2

b) Letfl2 =6, 13 =1, %=1, £6 =2
v =33.7

) Letfl2 =3, 5=, 3=, 2°=2
v = 33.2

General case

o = {1,4,5,7} D = {2,3,6,7} onp = {7}
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Link table
ij dij vij tij fij
12 | 100 | 50 2 | 25
16 | 400 | 40 10 | 30
23 | 250 | 50° 51|10
27 | 100 | 25 4 | 10
43 50 | 20 }2.5 5
45 | 160 | 40 4 | 20
56 | 210 | 35 6 | 30
67 | 360 | 30 12 | 20
74 | 280 | 70 4 |10
73 | 120 | 60 2|10
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Flow table

x | 5| R | B | F
1 | 55 o | s5
4 | 15 10 | 25
5 | 10 20 | 30
7 |20 |30 |30] 20
2 5 | 25| 20
3 25 | 25| o
6 40 | 60| 20
F = 100




For direct computation
OD table ié’gg sible
ij o g s i i e
12 (1,2) 100 2 50 5 250
13 | 1,2,3) 350 7 50 0
(2,2,7,3) 320 8 40 | 0
16 (1. 6) 400 10 40 30 1200
17 | @,2,7 200 6 33.3 || 20 666
(1,6,7) 760 22 34.5 0
43 (4, 3) 50 2.5 20 5 100
46 | (4,5,6) 370 10 37 100 -] 370
53 | (5,6,7,3) 690 20 34,5 0
56 (5, 6) 210 6 35 0
57 (5,6, 7) 570 18 31.5 10 317
73 (7, 3) 120 2 60 20 1200
76 (7, 4,5, 6) 650 14 46.4 0
4103 = v =
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max{50, 40, 33.3,34.5} = 50 v, = 33.3
max{20,37} = 37 v, = 20

max {60, 46.4} = 60 v, = 46.4
max{34.5,35,31.7} = 35 ve = 3L.7
2‘.skvk = (55)(50)+(15)(37)+(10)(35)+(20)(60) = 4855
ZSkvk = (55)(33.3)+(15)(20)+ (10)(31. 7)+(20)(46. 4) = 3378
50 u, = 50

max {50, 40, 20, 34. 5,60} = 60 ug = 20

max {40,37,35,46. 4} = 46.4 u, = 35
max{33.3,34.5,31.7} = 34.5 uy = 31.7
zRPUp = 5(50)+25(60)+40(46. 4)+30(34.5) = 4641
ZRpup = 5(50)+25(20)+40(35)+30(31.7) = 3101
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C. DIRECTIONS FOR FURTHER RESEARCH

MATHEMATICA has been engaged in research on aggregation
in network models in transpartation planning over the past 14 months.
The principal results of this research are reported in the technical
papers of this report. As a natural by-product of this research, we
have identified a number of directions for further research which promise
useful results. These fall roughly into three categories, which will be

described separately below:

I. THEORY OF NETWORK AGGREGATION
II. ALGORITHMS RELATED TO NETWORK AGGREGATION

III. NETWORK AGGREGATION AND TRANSPORTATION
PLANNING,
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I. THEORY OF NETWORK AGGREGATION

1. The primary tool that has been developed for the bounding
of errors due to aggregation is the judicious application of duality
concepts from mathematical programming. The usefulness of this tool
has been shown for the Hitchcock-Koopmans transportation model
combined with appropriate aggregation methods. For the equilibrium -
model, we can, at present, merely give miniature examples of the
appli.cation of duality to estimate aggregation error. We propose to
continue this research, extending the results to more general networks

and to aggregation methods that reflect transportation planning practice.

2. Little or no research has been performed on the ""average''
or ''typical' performance of aggregation methods. The results of such
research are needed to make statements about such statistics as the
mean and variance of errors due to aggregation. It is proposed that
such research be undertaken. To be successful, it needs several
essential components. The experimental design of a network model, an
aggregation method, and a mathematical technique must be done in such
a way to reflect useful applications, current aggregation practice, apd
realistic computational goals. It appears that these features are _avail-

able to make such research promising.
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II. ALGORITHMS RELATED TO NETWORK AGGREGATION

As part of the past year's research, an algorithm for the user
optimized equilibrium model was developed that involves path extraction
aggregation. A detailed outline of the algorithm is provided in the
final report. The situation with regard to this algorithm is somewhat
different from other new algorithms since, although it has not yet been
programmed, the structure is so close to known and tested algorithms
that f)ast computational experience (reported in ""The Sandwich Method, "

Journal of Optimization Theory, November 1975) is certain to be an

accurate guide to its performance.

We propose to program, test, and study the applications of this
algorithim. .Two primary questions would guide this work: (a) What are
the best uses that can be made of an algorithm of this kind in trans-
portation planning? (b) What are the best rules for path extraction to
implement the algorithm for large networks? A subsidiary use of the
algorithm would be to complement the studies of bounds and biases

described under (I) above.
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III. NETWORK AGGREGATION AND TRANSPORTATION
PLANNING

In our summary report, we have indicated that a complete
analysis of an instance of aggregation involves the interaction of four
factors: aggregation method, network model, mathematical technique
or algorithm, and model application, It was noted that our research
to date has slighted the uses of the aﬁswera in decision making. How-
ever, it is crucial that the impact of network aggregation is measured
in terms of the improved performance of network algorithms and in the
changes in transportation planning decisions. These decisions are
usually not based directly on outputs of the network model solutions,
but rather are based on function of these outputs. Typically equilibrium
model results, for example, are combined with other da:;:a. in a cost-*
benefit/impact model to determine system costs, environmental impacts,
energy consumptions, accidents, land uses, displacements, etc. Often
these latter measures are presented as overall or slightly broken-out
results (e.g. by node). The experience of optimization practitioners
suggests that these results will tend to be less sensitive to model
changes such as those that are introduced through aggregation.

These observations suggest the following line of inquiry:

e _ Identify the uses of transportation planning.
° Determine the variables which affect the decisions

in these uses.
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Determine the levels of detail at which these
variables must be obtained.

Determine the functions which relate these
variables to the outputs of network models.
Categorize these functions according to the
number of outputs involved.

Assess, thereby, the senéitivity of decision

making variables to aggregation.

Alternately, it is desirable to tie down this investigation to the typical

applications at one end and to the specific network models at the other

end.
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REPORT OF INVENTIONS APPENDIX

The work performed under this contract comprised a review, evaluation,
and extension of mathematical techniques for network aggregation. A diligent
review of the results has showm that . the new techniques developed, while
an extension of knowledge in the field, do not represent potentially

\—ﬁt_entable items.’
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